147 research outputs found

    The impact of agriculture on climate change

    Get PDF
    The impact of agriculture on climate change is not fully understood, but it is clear that the human role is considerably more than the increase in GHG concentration. Agroecosystems are intensively managed, and as farming practices evolve the role of agriculture will change. Agricultural practices can influence climate through a modification of the surface energy budget as well as through GHG emissions

    Diurnal and Seasonal Patterns of Methane Emissions from a Dairy Operation in North China Plain

    Get PDF
    In China, dairy cattle managed in collective feedlots contribute about 30% of the milk production and are believed to be an important contributor to national methane emissions. Methane emissions from a collective dairy feedlot in North China Plain (NCP) were measured during the winter, spring, summer, and fall seasons with open-path lasers in combination with an inverse dispersion technique. Methane emissions from the selected dairy feedlot were characterized by an apparent diurnal pattern with three peaks corresponding to the schedule of feeding activities. On a per capita basis, daily methane emission rates of these four seasons were 0.28, 0.32, 0.33, and 0.30 kg head−1 d−1, respectively. In summary, annual methane emission rate was 112.4 kg head−1 yr−1 associated with methane emission intensity of 32.65 L CH4 L−1 of milk and potential methane conversion factor Ym of 6.66% of gross energy intake for mature dairy cows in North China Plain

    Existence of global strong solutions to a beam-fluid interaction system

    Get PDF
    We study an unsteady non linear fluid-structure interaction problem which is a simplified model to describe blood flow through viscoleastic arteries. We consider a Newtonian incompressible two-dimensional flow described by the Navier-Stokes equations set in an unknown domain depending on the displacement of a structure, which itself satisfies a linear viscoelastic beam equation. The fluid and the structure are fully coupled via interface conditions prescribing the continuity of the velocities at the fluid-structure interface and the action-reaction principle. We prove that strong solutions to this problem are global-in-time. We obtain in particular that contact between the viscoleastic wall and the bottom of the fluid cavity does not occur in finite time. To our knowledge, this is the first occurrence of a no-contact result, but also of existence of strong solutions globally in time, in the frame of interactions between a viscous fluid and a deformable structure

    The challenge of reconciling bottom-up agricultural methane emissions inventories with top-down measurements

    Get PDF
    Agriculture is estimated to produce more than 40% of anthropogenic methane (CH4) emissions, contributing to global climate change. Bottom-up, IPCC based methodologies are typically used to estimate the agriculture sector\u2019s contribution, but these estimates are rarely verified beyond the farm gate, due to the challenge of separating interspersed sources. We present flux measurements of CH4, using eddy covariance (EC), relaxed eddy accumulation (REA) and wavelet covariance obtained using an aircraft-based measurement platform and compare these top-down estimates with bottom-up footprint adjusted inventory estimates of CH4 emissions for an agricultural region in eastern Ontario, Canada. Top-down CH4 fluxes agree well (mean \ub1 1 standard error: EC = 17 \ub1 4 mg CH4 m 122 d 121; REA = 19 \ub1 3 mg CH4 m 122 d 121, wavelet covariance = 16 \ub1 3 mg CH4 m 122 d 121), and are not statistically different, but significantly exceed bottom-up inventory estimates of CH4 emissions based on animal husbandry (8 \ub1 1 mg CH4 m 122 d 121). The discrepancy between top-down and bottom-up estimates was found to be related to both increasing fractional area of wetlands in the flux footprint, and increasing surface temperature. For the case when the wetland area in the flux footprint was less than 10% fractional coverage, the top-down and bottom-up estimates were within the measurement error. This result provides the first independent verification of agricultural methane emissions inventories at the regional scale. Wavelet analysis, which provides spatially resolved fluxes, was used to attempt to separate CH4 emissions from managed and unmanaged CH4 sources. Opportunities to minimize the challenges of verifying agricultural CH4 emissions inventories using aircraft flux measuring systems are discussed.Peer reviewed: YesNRC publication: Ye

    Development of Crop.LCA, an adaptable screening life cycle assessment tool for agricultural systems: a Canadian scenario assessment

    Get PDF
    There is an increasing demand for sustainable agricultural production as part of the transition towards a globally sustainable economy. To quantify impacts of agricultural systems on the environment, life cycle assessment (LCA) is ideal because of its holistic approach. Many tools have been developed to conduct LCAs in agriculture, but they are not publicly available, not open-source, and have a limited scope. Here, a new adaptable open-source tool (Crop.LCA) for carrying out LCA of cropping systems is presented and tested in an evaluation study with a scenario assessment of 4 cropping systems using an agroecosystem model (DNDC) to predict soil GHG emissions. The functional units used are hectares (ha) of land and gigajoules (GJ) of harvested energy output, and 4 impact categories were evaluated: cumulative energy demand (CED), 100-year global warming potential (GWP), eutrophication and acidification potential. DNDC was used to simulate 28 years of cropping system dynamics, and the results were used as input in Crop.LCA. Data were aggregated for each 4-year rotation and statistically analyzed. Introduction of legumes into the cropping system reduced CED by 6%, GWP by 23%, and acidification by 19% per ha. These results highlight the ability of Crop.LCA to capture cropping system characteristics in LCA, and the tool constitutes a step forward in increasing the accuracy of LCA of cropping systems as required for bio-economy system assessments. Furthermore, the tool is open-source, highly transparent and has the necessary flexibility to assess agricultural systems

    Development of Crop.LCA, an adaptable screening life cycle assessment tool for agricultural systems: a Canadian scenario assessment

    No full text
    There is an increasing demand for sustainable agricultural production as part of the transition towards a globally sustainable economy. To quantify impacts of agricultural systems on the environment, life cycle assessment (LCA) is ideal because of its holistic approach. Many tools have been developed to conduct LCAs in agriculture, but they are not publicly available, not open-source, and have a limited scope. Here, a new adaptable open-source tool (Crop.LCA) for carrying out LCA of cropping systems is presented and tested in an evaluation study with a scenario assessment of 4 cropping systems using an agroecosystem model (DNDC) to predict soil GHG emissions. The functional units used are hectares (ha) of land and gigajoules (GJ) of harvested energy output, and 4 impact categories were evaluated: cumulative energy demand (CED), 100-year global warming potential (GWP), eutrophication and acidification potential. DNDC was used to simulate 28 years of cropping system dynamics, and the results were used as input in Crop.LCA. Data were aggregated for each 4-year rotation and statistically analyzed. Introduction of legumes into the cropping system reduced CED by 6%, GWP by 23%, and acidification by 19% per ha. These results highlight the ability of Crop.LCA to capture cropping system characteristics in LCA, and the tool constitutes a step forward in increasing the accuracy of LCA of cropping systems as required for bio-economy system assessments. Furthermore, the tool is open-source, highly transparent and has the necessary flexibility to assess agricultural systems

    Weak-strong uniqueness property for the full Navier-Stokes-Fourier system

    Full text link
    The Navier-Stokes-Fourier system describing the motion of a compressible, viscous, and heat conducting fluid is known to possess global-in-time weak solutions for any initial data of finite energy. We show that a weak solution coincides with the strong solution, emanating from the same initial data, as long as the latter exists. In particular, strong solutions are unique within the class of weak solutions
    • 

    corecore