We study an unsteady non linear fluid-structure interaction problem which is
a simplified model to describe blood flow through viscoleastic arteries. We
consider a Newtonian incompressible two-dimensional flow described by the
Navier-Stokes equations set in an unknown domain depending on the displacement
of a structure, which itself satisfies a linear viscoelastic beam equation. The
fluid and the structure are fully coupled via interface conditions prescribing
the continuity of the velocities at the fluid-structure interface and the
action-reaction principle. We prove that strong solutions to this problem are
global-in-time. We obtain in particular that contact between the viscoleastic
wall and the bottom of the fluid cavity does not occur in finite time. To our
knowledge, this is the first occurrence of a no-contact result, but also of
existence of strong solutions globally in time, in the frame of interactions
between a viscous fluid and a deformable structure