1,700 research outputs found

    The origin of the E+ transition in GaAsN alloys

    Full text link
    Optical properties of GaAsN system with nitrogen concentrations in the range of 0.9-3.7% are studied by full-potential LAPW method in a supercell approach. The E+ transition is identified by calculating the imaginary part of the dielectric function. The evolution of the energy of this transition with nitrogen concentration is studied and the origin of this transition is identified by analyzing the contributions to the dielectric function from different band combinations. The L_1c-derived states are shown to play an important role in the formation of the E+ transition, which was also suggested by recent experiments. At the same time the nitrogen-induced modification of the first conduction band of the host compound are also found to contribute significantly to the E+ transition. Further, the study of several model supercells demonstrated the significant influence of the nitrogen potential on the optical properties of the GaAsN system.Comment: 5 pages, 3 figure

    Multi-scale analysis of compressible viscous and rotating fluids

    Full text link
    We study a singular limit for the compressible Navier-Stokes system when the Mach and Rossby numbers are proportional to certain powers of a small parameter \ep. If the Rossby number dominates the Mach number, the limit problem is represented by the 2-D incompressible Navier-Stokes system describing the horizontal motion of vertical averages of the velocity field. If they are of the same order then the limit problem turns out to be a linear, 2-D equation with a unique radially symmetric solution. The effect of the centrifugal force is taken into account

    A ChandraSwiftChandra-Swift View of Point Sources in Hickson Compact Groups: High AGN fraction but a dearth of strong AGNs

    Get PDF
    We present ChandraChandra X-ray point source catalogs for 9 Hickson Compact Groups (HCGs, 37 galaxies) at distances 348934 - 89 Mpc. We perform detailed X-ray point source detection and photometry, and interpret the point source population by means of simulated hardness ratios. We thus estimate X-ray luminosities (LXL_X) for all sources, most of which are too weak for reliable spectral fitting. For all sources, we provide catalogs with counts, count rates, power-law indices (Γ\Gamma), hardness ratios, and LXL_X, in the full (0.58.00.5-8.0 keV), soft (0.52.00.5-2.0 keV) and hard (2.08.02.0-8.0 keV) bands. We use optical emission-line ratios from the literature to re-classify 24 galaxies as star-forming, accreting onto a supermassive black hole (AGNs), transition objects, or low-ionization nuclear emission regions (LINERs). Two-thirds of our galaxies have nuclear X-ray sources with SwiftSwift/UVOT counterparts. Two nuclei have LX,0.58.0keVL_{X,{\rm 0.5-8.0 keV}}~>1042 > 10^{42} erg s1^{-1}, are strong multi-wavelength AGNs and follow the known αOXνLν,nearUV\alpha_{\rm OX}-\nu L_{\nu,\rm near UV} correlation for strong AGNs. Otherwise, most nuclei are X-ray faint, consistent with either a low-luminosity AGN or a nuclear X-ray binary population, and fall in the "non-AGN locus" in αOXνLν,nearUV\alpha_{\rm OX}-\nu L_{\nu,\rm near UV} space, which also hosts other, normal, galaxies. Our results suggest that HCG X-ray nuclei in high specific star formation rate spiral galaxies are likely dominated by star formation, while those with low specific star formation rates in earlier types likely harbor a weak AGN. The AGN fraction in HCG galaxies with MR20M_R \le -20 and LX,0.58.0keV1041L_{X,{\rm 0.5-8.0 keV}} \ge 10^{41} erg s1^{-1} is 0.080.01+0.350.08^{+0.35}_{-0.01}, somewhat higher than the 5\sim 5% fraction in galaxy clusters.Comment: 77 pages (emulateapj), 28 tables, 11 figures. Accepted by ApJS on March 5, 201

    Some Like It Hot: Linking Diffuse X-ray Luminosity, Baryonic Mass, and Star Formation Rate in Compact Groups of Galaxies

    Get PDF
    We present an analysis of the diffuse X-ray emission in 19 compact groups of galaxies (CGs) observed with Chandra. The hottest, most X-ray luminous CGs agree well with the galaxy cluster X-ray scaling relations in LXTL_X-T and LXσL_X-\sigma, even in CGs where the hot gas is associated with only the brightest galaxy. Using Spitzer photometry, we compute stellar masses and classify HCGs 19, 22, 40, and 42 and RSCGs 32, 44, and 86 as fossil groups using a new definition for fossil systems that includes a broader range of masses. We find that CGs with total stellar and HI masses 1011.3\gtrsim10^{11.3} M_\odot are often X-ray luminous, while lower-mass CGs only sometimes exhibit faint, localized X-ray emission. Additionally, we compare the diffuse X-ray luminosity against both the total UV and 24 μ\mum star formation rates of each CG and optical colors of the most massive galaxy in each of the CGs. The most X-ray luminous CGs have the lowest star formation rates, likely because there is no cold gas available for star formation, either because the majority of the baryons in these CGs are in stars or the X-ray halo, or due to gas stripping from the galaxies in CGs with hot halos. Finally, the optical colors that trace recent star formation histories of the most massive group galaxies do not correlate with the X-ray luminosities of the CGs, indicating that perhaps the current state of the X-ray halos is independent of the recent history of stellar mass assembly in the most massive galaxies.Comment: 20 pages, 7 figures, accepted for publication in Ap

    A reconfigurable all-optical ultrasound transducer array for 3D endoscopic imaging

    Get PDF
    A miniature all-optical ultrasound imaging system is presented that generates three-dimensional images using a stationary, real acoustic source aperture. Discrete acoustic sources were sequentially addressed by scanning a focussed optical beam across the proximal end of a coherent fibre bundle; high-frequency ultrasound (156% fractional bandwidth centred around 13.5 MHz) was generated photoacoustically in the corresponding regions of an optically absorbing coating deposited at the distal end. Paired with a single fibre-optic ultrasound detector, the imaging probe (3.5 mm outer diameter) achieved high on-axis resolutions of 97 μm, 179 μm and 110 μm in the x, y and z directions, respectively. Furthermore, the optical scan pattern, and thus the acoustic source array geometry, was readily reconfigured. Implementing four different array geometries revealed a strong dependency of the image quality on the source location pattern. Thus, by employing optical technology, a miniature ultrasound probe was fabricated that allows for arbitrary source array geometries, which is suitable for three-dimensional endoscopic and laparoscopic imaging, as was demonstrated on ex vivo porcine cardiac tissue

    Optically-Based Strain Measuring Orthopaedic Screw for Fracture Fixation Implants

    Get PDF
    Fracture fixation usually involves mechanical fixation with rods, plates and/or screws which repair slowly and are susceptible to infection. Treatment of large defects use allografts which have failure rates of up to 25%, and complication rates as high as 30-60%. Implant infection and loosening are serious concerns, but can currently only be measured through expensive instrumented implants, biopsy culture, or radiographs. None of these directly quantify implant loading and stability however. There is therefore a need for a simple, cost effective way to quantify implant loading and stability in patients. The purpose of our study is to design and evaluate an optically-based strain measuring orthopaedic screw to quantify strain variation in the implant in-vivo after surgery and monitor the load sharing between the bone and the implant. The screw head incorporates a spectral ruler based on Moiré effect which indicates strain. The screw system developed will be able to quantify clinically-relevant bone healing strains in the range of 10-3000μstrains, corresponding to 0.5-150μm change in length for a 5cm gauge. Through this work, we will be able to develop a unique portable tool for physicians to quantify bone healing rather than relying on less quantitative assessments based on pain and radiography

    Existence of global strong solutions to a beam-fluid interaction system

    Get PDF
    We study an unsteady non linear fluid-structure interaction problem which is a simplified model to describe blood flow through viscoleastic arteries. We consider a Newtonian incompressible two-dimensional flow described by the Navier-Stokes equations set in an unknown domain depending on the displacement of a structure, which itself satisfies a linear viscoelastic beam equation. The fluid and the structure are fully coupled via interface conditions prescribing the continuity of the velocities at the fluid-structure interface and the action-reaction principle. We prove that strong solutions to this problem are global-in-time. We obtain in particular that contact between the viscoleastic wall and the bottom of the fluid cavity does not occur in finite time. To our knowledge, this is the first occurrence of a no-contact result, but also of existence of strong solutions globally in time, in the frame of interactions between a viscous fluid and a deformable structure

    A Kato type Theorem for the inviscid limit of the Navier-Stokes equations with a moving rigid body

    Full text link
    The issue of the inviscid limit for the incompressible Navier-Stokes equations when a no-slip condition is prescribed on the boundary is a famous open problem. A result by Tosio Kato says that convergence to the Euler equations holds true in the energy space if and only if the energy dissipation rate of the viscous flow in a boundary layer of width proportional to the viscosity vanishes. Of course, if one considers the motion of a solid body in an incompressible fluid, with a no-slip condition at the interface, the issue of the inviscid limit is as least as difficult. However it is not clear if the additional difficulties linked to the body's dynamic make this issue more difficult or not. In this paper we consider the motion of a rigid body in an incompressible fluid occupying the complementary set in the space and we prove that a Kato type condition implies the convergence of the fluid velocity and of the body velocity as well, what seems to indicate that an answer in the case of a fixed boundary could also bring an answer to the case where there is a moving body in the fluid
    corecore