126 research outputs found

    Equine parasitic andfungalpneumonias : clinical aspects

    Get PDF
    The prevalence and extent of parasitic and fungal pneumonias in horses remain unknown. Parascaris equorum is common among foals and young horses. As horses are only occasional hosts for Dictyocaulus arnfieldi, their contamination occurs when they are grazing together with donkeys. The severity of the respiratory signs in parasitic pneumonia is variable, and fecal examination is often inconclusive. Such infestations can be treated successfully with anthelmintics. In France, fungal pneumonias are mainly caused by Aspergillus sp in adult horses and by Pneumocystis sp in foals. These pathogens generally develop in immunocompromised patients. Clinical signs are variable and rarely suggestive of fungal pneumonia. Despite treatment with antifungal drugs, the prognosis is often guarded.La prévalence et l'importance des pneumonies parasitaires et fongiques chez le cheval ne sont pas bien connues. Parascaris equorum est un parasite fréquent affectant les poulains et les jeunes chevaux. Les chevaux sont des hÎtes occasionnels de Dictyocaulus arnfieldi qui se contaminent lors de pùturage commun avec des ùnes. Les signes respiratoires de pneumonies parasitaires sont de sévérité variable et le diagnostic par analyse coprologique est souvent infructueux. L'administration d'un anthelminthique constitue un traitement efficace. En France, les Aspergillus sont les champignons les plus fréquemment impliqués dans les pneumonies fongiques du cheval adulte et les Pneumocystis, dans celles du poulain. Le plus souvent, ces pathogÚnes prolifÚrent chez des patients dont l'immunité est compromise. Les signes cliniques sont variables, rendant la suspicion clinique difficile. Le pronostic est réservé malgré l'administration de molécules antifongiques

    EEG functional connectivity prior to sleepwalking : evidence of interplay between sleep and wakefulness

    Full text link
    Study Objectives: Although sleepwalking (somnambulism) affects up to 4% of adults, its pathophysiology remains poorly understood. Sleepwalking can be preceded by fluctuations in slow-wave sleep EEG signals, but the significance of these pre-episode changes remains unknown and methods based on EEG functional connectivity have yet to be used to better comprehend the disorder. Methods: We investigated the sleep EEG of 27 adult sleepwalkers (mean age: 29 ± 7.6 years) who experienced a somnambulistic episode during slow-wave sleep. The 20-second segment of sleep EEG immediately preceding each patient’s episode was compared with the 20-second segment occurring 2 minutes prior to episode onset. Results: Results from spectral analyses revealed increased delta and theta spectral power in the 20 seconds preceding the episodes’ onset as compared to the 20 seconds occurring 2 minutes before the episodes. The imaginary part of the coherence immediately prior to episode onset revealed (1) decreased delta EEG functional connectivity in parietal and occipital regions, (2) increased alpha connectivity over a fronto-parietal network, and (3) increased beta connectivity involving symmetric inter-hemispheric networks implicating frontotemporal, parietal and occipital areas. Conclusions: Taken together, these modifications in EEG functional connectivity suggest that somnambulistic episodes are preceded by brain processes characterized by the co-existence of arousal and deep slee

    High content live cell imaging for the discovery of new antimalarial marine natural products

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, <it>Plasmodium falciparum</it>.</p> <p>Methods</p> <p>A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown <it>in vitro </it>in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope.</p> <p>Results</p> <p>Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts.</p> <p>Conclusion</p> <p>Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials.</p

    World Antimalarial Resistance Network (WARN) II: In vitro antimalarial drug susceptibility

    Get PDF
    Intrinsic resistance of Plasmodium falciparum is clearly a major determinant of the clinical failure of antimalarial drugs. However, complex interactions between the host, the parasite and the drug obscure the ability to define parasite drug resistance in vivo. The in vitro antimalarial drug susceptibility assay determines ex-vivo growth of parasite in the presence of serial drug concentrations and, thus, eliminates host effects, such as drug metabolism and immunity. Although the sensitivity of the parasite to various antimalarials provided by such a test provides an important indicator of intrinsic parasite susceptibility, there are fundamental methodological issues that undermine comparison of in vitro susceptibility both between laboratories and within a single laboratory over time. A network of laboratories is proposed that will agree on the basic parameters of the in vitro test and associated measures of quality control. The aim of the network would be to establish baseline values of sensitivity to commonly used antimalarial agents from key regions of the world, and create a global database, linked to clinical, molecular and pharmacology databases, to support active surveillance to monitor temporal trends in parasite susceptibility. Such a network would facilitate the rapid detection of strains with novel antimalarial resistance profiles and investigate suitable alternative treatments with retained efficacy

    CC9 Livestock-Associated Staphylococcus aureus Emerges in Bloodstream Infections in French Patients Unconnected With Animal Farming

    Get PDF
    We report 4 bloodstream infections associated with CC9 agr type II Staphylococcus aureus in individuals without animal exposure. We demonstrate, by microarray analysis, the presence of egc cluster, fnbA, cap operon, lukS, set2, set12, splE, splD, sak, epiD, and can, genomic features associated with a high virulence potential in human

    Evolution of extensively drug-resistant tuberculosis over four decades: whole genome sequencing and dating analysis of Mycobacterium tuberculosis isolates from KwaZulu-Natal.

    Get PDF
    CAPRISA, 2015.Abstract available in pdf
    • 

    corecore