28 research outputs found
High resolution photonic force microscopy based on sharp nano-fabricated tips
Sub-nm resolution images can be achieved by Atomic Force Microscopy (AFM) on
samples that are deposited on hard substrates. However, it is still extremely
challenging to image soft interfaces, such as biological membranes, due to the
deformations induced by the tip. Photonic Force Microscopy (PhFM), based on
optical tweezers (OT), represents an interesting alternative for soft
scanning-probe microscopy. Using light instead of a physical cantilever to hold
the scanning probe results in a stiffness ( pN/nm) which
can be 2-3 orders of magnitude lower than that of standard cantilevers
( pN/nm). Combined with nm resolution of displacement
measurements of the trapped probe, this allows for imaging soft materials
without force-induced artefacts. However, the size of the optically trapped
probe, often chosen as a m-size sphere, has so far limited the
resolution of PhFM. Here we show a novel and simple nanofabrication protocol to
massively produce optically trappable quartz particles which mimic the sharp
tips of AFM. We demonstrate and quantify the stable trapping of particles with
tips as sharp as 35 nm, the smallest used in PhFM to date. Raster scan images
of rigid nanostructures with features smaller than 80 nm obtained with our tips
compare well with AFM images of the same samples. Imaging the membrane of
living malaria-infected red blood cells produces no visible artefacts and
reveals the sub-micron structural features termed knobs, related to the
parasite activity within the cell. The use of nano-engineered particles in PhFM
opens the way to imaging soft and biological samples at high resolution
Quantifying the performances of SU-8 microfluidic devices: high liquid water tightness, long-term stability, and vacuum compatibility
Despite several decades of development, microfluidics lacks a sealing
material that can be readily fabricated, leak-tight under high liquid water
pressure, stable over a long time, and vacuum compatible. In this paper, we
report the performances of a micro-scale processable sealing material for
nanofluidic/microfluidics chip fabrication, which enables us to achieve all
these requirements. We observed that micrometric walls made of SU-8
photoresist, whose thickness can be as low as 35 m, exhibit water pressure
leak-tightness from 1.5 bar up to 5.5 bar, no water porosity even after 2
months of aging, and are able to sustain under mbar vacuum. This
sealing material is therefore reliable and versatile for building microchips,
part of which must be isolated from liquid water under pressure or vacuum.
Moreover, the fabrication process we propose does not require the use of
aggressive chemicals or high-temperature or high-energy plasma treatment. It
thus opens a new perspective to seal microchips where delicate surfaces such as
nanomaterials are present
Microscope à force photonique : piégeage en pince optique de particules micro-usinées pour la mesure de topographies de surfaces molles.
Optical Tweezers allow microscopic or sub-microscopic particles to be trapped in the beam waist of a focused laser and, via an optical control system, to move and measure the position of the particles with a nanometric resolution. But this optical setup can also be used as a local probe microscopy technique to produce a topographic map of a surface of a few microns. Photonic force microscopy (PhFM) is a near-field imaging technique based on the measurement, at nanometric resolution, of the position of an optically trapped particle while scanning the topography of a surface. Compared to conventional atomic force microscopes (AFMs), this technique has the advantage of applying a much lower force to the sample, opening up the possibility of imaging very soft materials such as cell membranes, without the deformation that often accompanies AFM imaging of these materials. In addition, the absence of a cantilever allows scanning in topologically restricted areas. However, the lateral resolution in PhFM remains limited by the geometry of the trapped object, which is often chosen spherical. In this thesis, I present a simple, economical and reliable nanofabrication process for the batch production of quartz microcylinders with a tip on one end. Due to the elongated particle geometry and birefringence of the Quartz, the linear polarized optical trap constrains all degrees of freedom of the cylinder, allowing stable trapping and nm resolution in detecting the particle position in all three directions. The size of the tip allows a lateral resolution of 30 nm, while applying a force as low as 1 pN to the sample. In addition to nanofabrication processes, this work focused on developing the PhFM imaging technique, the calibration of the probe's displacements to demonstrate its effectiveness in analyzing rigid surfaces but also biological objects such as microtubules or cell surfaces. As such, we were able to produce an image of a red blood cell membrane that shows the underlying structure of the cytoskeleton.Les pinces optiques permettent de piéger des particules microniques ou sub-microniques dans le cône d’un faisceau laser focalisé et, via un système d’asservissement du faisceau de déplacer et mesurer la position des particules avec une résolution nanométrique. Mais cet outil peut également servir de technique de microscopie à sonde locale pour produire une carte topographique d’une surface de quelques microns. La microscopie à force photonique (PhFM) est une technique d'imagerie en champ proche basée sur la mesure, à une résolution nanométrique, de la position d'une particule piégée optiquement tout en balayant la topographie d'une surface. Par rapport aux microscopes à force atomique (AFMs) conventionnels, cette technique à l'avantage d'appliquer une force largement plus faible sur l'échantillon, ouvrant la possibilité d'imager des matériaux très mous comme des membranes cellulaires, sans la déformation qui accompagne souvent l'imagerie AFM de ces matériaux. De plus, l'absence d'un cantilever permet le balayage dans des régions topologiquement restreintes. Cependant, la résolution latérale en PhFM reste limitée par la géométrie de l'objet piégé, qui est souvent choisi sphérique. Dans cette thèse, je présente un procédé de nanofabrication simple, économique et fiable pour la production en lot de microcylindres de quartz portant une pointe sur une extrémité. En raison de la géométrie allongée des particules et de la biréfringence du Quartz, le piège optique à polarisation linéaire contraint tous les degrés de liberté du cylindre, permettant un piégeage stable et une résolution de l’ordre du nm dans la détection de la position des particules dans les trois directions. La taille de la pointe permet une résolution latérale de 30 nm, tout en appliquant une force aussi faible que 1 pN sur l'échantillon. Outre les procédés de nanofabrication, ce travail s’est attaché à développer la technique du l’imagerie PhFM, la calibration des déplacements de la sonde pour démontrer son efficacité à analyser des surfaces rigides mais également des objets biologiques comme des microtubules ou des surfaces de cellule. A ce titre nous sommes parvenus à produire une image d’une membrane de globule rouge laissant apercevoir la structure sous-jacente du cytosquelette
Photonic Force Microscope : Optically trapped micro-machined particles for topographic measure of soft surface
Les pinces optiques permettent de piéger des particules microniques ou sub-microniques dans le cône d’un faisceau laser focalisé et, via un système d’asservissement du faisceau de déplacer et mesurer la position des particules avec une résolution nanométrique. Mais cet outil peut également servir de technique de microscopie à sonde locale pour produire une carte topographique d’une surface de quelques microns. La microscopie à force photonique (PhFM) est une technique d'imagerie en champ proche basée sur la mesure, à une résolution nanométrique, de la position d'une particule piégée optiquement tout en balayant la topographie d'une surface. Par rapport aux microscopes à force atomique (AFMs) conventionnels, cette technique à l'avantage d'appliquer une force largement plus faible sur l'échantillon, ouvrant la possibilité d'imager des matériaux très mous comme des membranes cellulaires, sans la déformation qui accompagne souvent l'imagerie AFM de ces matériaux. De plus, l'absence d'un cantilever permet le balayage dans des régions topologiquement restreintes. Cependant, la résolution latérale en PhFM reste limitée par la géométrie de l'objet piégé, qui est souvent choisi sphérique. Dans cette thèse, je présente un procédé de nanofabrication simple, économique et fiable pour la production en lot de microcylindres de quartz portant une pointe sur une extrémité. En raison de la géométrie allongée des particules et de la biréfringence du Quartz, le piège optique à polarisation linéaire contraint tous les degrés de liberté du cylindre, permettant un piégeage stable et une résolution de l’ordre du nm dans la détection de la position des particules dans les trois directions. La taille de la pointe permet une résolution latérale de 30 nm, tout en appliquant une force aussi faible que 1 pN sur l'échantillon. Outre les procédés de nanofabrication, ce travail s’est attaché à développer la technique du l’imagerie PhFM, la calibration des déplacements de la sonde pour démontrer son efficacité à analyser des surfaces rigides mais également des objets biologiques comme des microtubules ou des surfaces de cellule. A ce titre nous sommes parvenus à produire une image d’une membrane de globule rouge laissant apercevoir la structure sous-jacente du cytosquelette.Optical Tweezers allow microscopic or sub-microscopic particles to be trapped in the beam waist of a focused laser and, via an optical control system, to move and measure the position of the particles with a nanometric resolution. But this optical setup can also be used as a local probe microscopy technique to produce a topographic map of a surface of a few microns. Photonic force microscopy (PhFM) is a near-field imaging technique based on the measurement, at nanometric resolution, of the position of an optically trapped particle while scanning the topography of a surface. Compared to conventional atomic force microscopes (AFMs), this technique has the advantage of applying a much lower force to the sample, opening up the possibility of imaging very soft materials such as cell membranes, without the deformation that often accompanies AFM imaging of these materials. In addition, the absence of a cantilever allows scanning in topologically restricted areas. However, the lateral resolution in PhFM remains limited by the geometry of the trapped object, which is often chosen spherical. In this thesis, I present a simple, economical and reliable nanofabrication process for the batch production of quartz microcylinders with a tip on one end. Due to the elongated particle geometry and birefringence of the Quartz, the linear polarized optical trap constrains all degrees of freedom of the cylinder, allowing stable trapping and nm resolution in detecting the particle position in all three directions. The size of the tip allows a lateral resolution of 30 nm, while applying a force as low as 1 pN to the sample. In addition to nanofabrication processes, this work focused on developing the PhFM imaging technique, the calibration of the probe's displacements to demonstrate its effectiveness in analyzing rigid surfaces but also biological objects such as microtubules or cell surfaces. As such, we were able to produce an image of a red blood cell membrane that shows the underlying structure of the cytoskeleton
PLL-FITC fluorescence thermography on dry surfaces
International audienc
Talbot displacement lithography with soft elastomeric conformal phase masks
International audienceWe report a novel method to create 2D hierarchical nanopatterns with a simple PDMS scaffold made of a replica of a grating and a spacer. This technique takes advantage of the Talbot effect that is the creation of an interference pattern from a grating at a given distance normal to the grating surface. By combining a conformal soft mask made of PDMS and a spacer to separate the phase shift mask from the photoresist, we can take advantage of the interference pattern to imprint smaller structures
Birefringent quartz micro cylinders for angular optical tweezers
International audienc
Fabrication of quartz microcylinders by laser interference lithography for angular optical tweezers
International audienc
The Opportunity Cost and OCBA Selection Procedures in Ordinal Optimization
International audienc
Tailoring the crystal growth of quartz on silicon for patterning epitaxial piezoelectric films
Epitaxial films of piezoelectric alpha-quartz could enable the fabrication of sensors with unprecedented sensitivity for prospective applications in electronics, biology and medicine. However, the prerequisites are harnessing the crystallization of epitaxial alpha-quartz and tailoring suitable film microstructures for nanostructuration. Here, we bring new insights into the crystallization of epitaxial alpha-quartz films on silicon (100) from the devitrification of porous silica and the control of the film microstructures: we show that by increasing the quantity of devitrifying agent (Sr) it is possible to switch from an alpha-quartz microstructure consisting of a porous flat film to one dominated by larger, fully dense alpha-quartz crystals. We also found that the film thickness, relative humidity and the nature of the surfactant play an important role in the control of the microstructure and homogeneity of the films. Via a multi-layer deposition method, we have extended the maximum thickness of the alpha-quartz films from a few hundreds of nm to the mu m range. Moreover, we found a convenient method to combine this multilayer approach with soft lithography to pattern silica films while preserving epitaxial crystallization. This improved control over crystallization and the possibility of preparing patterned films of epitaxial alpha-quartz on Si substrates pave the path to future developments in applications based on electromechanics, optics and optomechanics.Peer reviewe