56 research outputs found

    Project management : learning by breaking the rules

    Get PDF
    The paper explores project management in action in a large public research organisation – NLAT which decided to change its internal organisation from team-based to project-based organisation a few years ago. A systematic and comparative analysis of 8 projects reveals that adherence to the ISO 9000’s standardized rules of project management - specific staffing and project leaders, definition of milestones ex ante, procedure manuals, and formalized learning accumulation mechanisms - had little to do with the organisations success over recent years: Looking for explanations for this success, the paper focuses on the process of transferring from one project to another, enhancing organisational learning through rules breaking. We identify three elements which encourage the accumulation of knowledge and competencies, as organisational learning: low project core staffing levels which stimulates the circulation of engineers and researchers between projects and blurs project boundaries, implementing and managing thematic projects which build on specific competencies developed in dedicated projects and encouraging ‘bricolage’ to hybridise project management with traditional hierarchical management practices.PROJECT MANAGEMENT;R&D;HIGH TECH;MANAGEMENT PRACTICES

    Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector

    Full text link
    Originally designed as a new nuclear reactor monitoring device, the Nucifer detector has successfully detected its first neutrinos. We provide the second shortest baseline measurement of the reactor neutrino flux. The detection of electron antineutrinos emitted in the decay chains of the fission products, combined with reactor core simulations, provides an new tool to assess both the thermal power and the fissile content of the whole nuclear core and could be used by the Inter- national Agency for Atomic Energy (IAEA) to enhance the Safeguards of civil nuclear reactors. Deployed at only 7.2m away from the compact Osiris research reactor core (70MW) operating at the Saclay research centre of the French Alternative Energies and Atomic Energy Commission (CEA), the experiment also exhibits a well-suited configuration to search for a new short baseline oscillation. We report the first results of the Nucifer experiment, describing the performances of the 0.85m3 detector remotely operating at a shallow depth equivalent to 12m of water and under intense background radiation conditions. Based on 145 (106) days of data with reactor ON (OFF), leading to the detection of an estimated 40760 electron antineutrinos, the mean number of detected antineutrinos is 281 +- 7(stat) +- 18(syst) electron antineutrinos/day, in agreement with the prediction 277(23) electron antineutrinos/day. Due the the large background no conclusive results on the existence of light sterile neutrinos could be derived, however. As a first societal application we quantify how antineutrinos could be used for the Plutonium Management and Disposition Agreement.Comment: 22 pages, 16 figures - Version

    The Corinth Rift Laboratory, Greece (CRL): A Multidisciplinary Near Fault Observatory (NFO) on a Fast Rifting System

    Full text link
    The western rift of Corinth (Greece) is one of the most active tectonic structures of the euro-mediterranean area. Its NS opening rate is 1.5 cm/yr ( strain rate of 10-6/yr) results into a high microseismicity level and a few destructive, M>6 earthquakes per century, activating a system of mostly north dipping normal faults. Since 2001, monitoring arrays of the European Corinth Rift Laboratory (CRL, www.crlab.eu) allowed to better track the mechanical processes at work, with short period and broad band seismometers, cGPS, borehole strainmeters, EM stations, …). The recent (300 kyr) tectonic history has been revealed by onland (uplifted fan deltas and terraces) and offshore geological studies (mapping, shallow seismic, coring), showing a fast evolution of the normal fault system. The microseismicity, dominated by swarms lasting from days to months, mostly clusters in a layer 1 to 3 km thick, between 6 and 9 km in depth, dipping towards north, on which most faults are rooting. The diffusion of the microseismicity suggests its triggering by pore pressure transients, with no or barely detected strain. Despite a large proportion of multiplets, true repeaters seem seldom, suggesting a minor contribution of creep in their triggering, although transient or steady creep is clearly detected on the shallow part of some majors faults. The microseismic layer may thus be an immature, downward growing detachment, and the dominant rifting mechanism might be a mode I, anelastic strain beneath the rift axis , for which a mechanical model is under development. Paleoseismological (trenching, paleoshorelines, turbidites), archeological and historical studies completed the catalogues of instrumental seismicity, motivating attempts of time dependent hazard assessment. The Near Fault Observatory of CRL is thus a multidisciplinary research infrastructure aiming at a better understanding and modeling of multiscale, coupled seismic/aseismic processes on fault systems.Grant for Researchers (CC) ID 188753

    Optimal foraging and community structure: implications for a guild of generalist grassland herbivores

    Full text link
    A particular linear programming model is constructed to predict the diets of each of 14 species of generalist herbivores at the National Bison Range, Montana. The herbivores have body masses ranging over seven orders of magnitude and belonging to two major taxa: insects and mammals. The linear programming model has three feeding constraints: digestive capacity, feeding time and energy requirements. A foraging strategy that maximizes daily energy intake agrees very well with the observed diets. Body size appears to be an underlying determinant of the foraging parameters leading to diet selection. Species that possess digestive capacity and feeding time constraints which approach each other in magnitude have the most generalized diets. The degree that the linear programming models change their diet predictions with a given percent change in parameter values (sensitivity) may reflect the observed ability of the species to vary their diets. In particular, the species which show the most diet variability are those whose diets tend to be balanced between monocots and dicots. The community-ecological parameters of herbivore body-size ranges and species number can possibly be related to foraging behavior.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47765/1/442_2004_Article_BF00377109.pd

    Human Resources Management

    No full text
    Like most other service industries, the healthcare industry is very labor-intensive. One reason for healthcare’s reliance on an extensive workforce is that it is not possible to produce a “service” and then store it for later consumption. Human resources are all of the people who currently contribute to doing the work of the organization, as well as those who might contribute in the future and those who have contributed in the recent past. The intensive use of labor and the variability in human resources in professional practice require that the attention of leaders in the industry be directed toward managing the performance of the persons involved in the delivery of these services. The effective management of people requires that healthcare executives understand the factors that influence individual and group performance of staff. Such factors include not only the traditional human resources management (HRM) activities (that is, recruitment and selection, training and development, appraisal, compensation, and employee relations) but also aligning these functions with strategy and other organizational aspects that impinge on human resources (HR) activities
    corecore