479 research outputs found

    Spintronics for electrical measurement of light polarization

    Full text link
    The helicity of a circularly polarized light beam may be determined by the spin direction of photo-excited electrons in a III-V semiconductor. We present a theoretical demonstration how the direction of the ensuing electron spin polarization may be determined by electrical means of two ferromagnet/semiconductor Schottky barriers. The proposed scheme allows for time-resolved detection of spin accumulation in small structures and may have a device application.Comment: Revised version, 8 two-column pages, 5 figures; Added: a comprehensive time dependent analysis, figures 3b-3c & 5, equations 6 & 13-16 and 3 references. submitted to Phys. Rev.

    Emergence of 6-particle "hexciton'' states in WS2_2 and MoSe2_2 monolayers

    Full text link
    When doped with a high density of mobile charge carriers, monolayer transition-metal dichalcogenide (TMD) semiconductors can host new types of composite many-particle exciton states that do not exist in conventional semiconductors. Such multi-particle bound states arise when a photoexcited electron-hole pair couples to not just a single Fermi sea that is quantum-mechanically distinguishable (as for the case of conventional charged excitons or trions), but rather couples simultaneously to \textit{multiple} Fermi seas, each having distinct spin and valley quantum numbers. Composite six-particle ``hexciton'' states were recently identified in electron-doped WSe2_2 monolayers, but under suitable conditions they should also form in all other members of the monolayer TMD family. Here we present spectroscopic evidence demonstrating the emergence of many-body hexcitons in charge-tunable WS2_2 monolayers (at the A-exciton) and MoSe2_2 monolayers (at the B-exciton). The roles of distinguishability and carrier screening on the stability of hexcitons are discussed.Comment: 7 pages, 3 fig

    Electrical expression of spin accumulation in ferromagnet/semiconductor structures

    Full text link
    We treat the spin injection and extraction via a ferromagnetic metal/semiconductor Schottky barrier as a quantum scattering problem. This enables the theory to explain a number of phenomena involving spin-dependent current through the Schottky barrier, especially the counter-intuitive spin polarization direction in the semiconductor due to current extraction seen in recent experiments. A possible explanation of this phenomenon involves taking into account the spin-dependent inelastic scattering via the bound states in the interface region. The quantum-mechanical treatment of spin transport through the interface is coupled with the semiclassical description of transport in the adjoining media, in which we take into account the in-plane spin diffusion along the interface in the planar geometry used in experiments. The theory forms the basis of the calculation of spin-dependent current flow in multi-terminal systems, consisting of a semiconductor channel with many ferromagnetic contacts attached, in which the spin accumulation created by spin injection/extraction can be efficiently sensed by electrical means. A three-terminal system can be used as a magnetic memory cell with the bit of information encoded in the magnetization of one of the contacts. Using five terminals we construct a reprogrammable logic gate, in which the logic inputs and the functionality are encoded in magnetizations of the four terminals, while the current out of the fifth one gives a result of the operation.Comment: A review to appear in Mod. Phys. Lett.

    Graphite and graphene as perfect spin filters

    Get PDF
    Based upon the observations (i) that their in-plane lattice constants match almost perfectly and (ii) that their electronic structures overlap in reciprocal space for one spin direction only, we predict perfect spin filtering for interfaces between graphite and (111) fcc or (0001) hcp Ni or Co. The spin filtering is quite insensitive to roughness and disorder. The formation of a chemical bond between graphite and the open dd-shell transition metals that might complicate or even prevent spin injection into a single graphene sheet can be simply prevented by dusting Ni or Co with one or a few monolayers of Cu while still preserving the ideal spin injection property

    Optical spin injection and spin lifetime in Ge heterostructures

    Full text link
    We demonstrate optical orientation in Ge/SiGe quantum wells and study their spin properties. The ultrafast electron transfer from the center of the Brillouin zone to its edge allows us to achieve high spin-polarization efficiencies and to resolve the spin dynamics of holes and electrons. The circular polarization degree of the direct-gap photoluminescence exceeds the theoretical bulk limit, yielding ~37% and ~85% for transitions with heavy and light holes states, respectively. The spin lifetime of holes at the top of the valence band is found to be ~0.5 ps and it is governed by transitions between heavy and light hole states. Electrons at the bottom of the conduction band, on the other hand, have a spin lifetime that exceeds 5 ns below 150 K. Theoretical analysis of the electrons spin relaxation indicates that phonon-induced intervalley scattering dictates the spin lifetime.Comment: 5 pages, 3 figure

    Analysis of phonon-induced spin relaxation processes in silicon

    Full text link
    We study all of the leading-order contributions to spin relaxation of \textit{conduction} electrons in silicon due to the electron-phonon interaction. Using group theory, kpk\cdot p perturbation method and rigid-ion model, we derive an extensive set of matrix element expressions for all of the important spin-flip transitions in the multi-valley conduction band. The scattering angle has an explicit dependence on the electron wavevectors, phonon polarization, valley position and spin orientation of the electron. Comparison of the derived analytical expressions with results of empirical pseudopotential and adiabatic band charge models shows excellent agreement.Comment: 30 pages,10 figure

    Spin transport theory in ferromagnet/semiconductor systems with non-collinear magnetization configurations

    Full text link
    We present a comprehensive theory of spin transport in a non-degenerate semiconductor that is in contact with multiple ferromagnetic terminals. The spin dynamics in the semiconductor is studied during a perturbation of a general, non-collinear magnetization configuration and a method is shown to identify the various configurations from current signals. The conventional Landauer-B\"{u}ttiker description for spin transport across Schottky contacts is generalized by the use of a non-linearized I-V relation, and it is extended by taking into account non-coherent transport mechanisms. The theory is used to analyze a three terminal lateral structure where a significant difference in the spin accumulation profile is found when comparing the results of this model with the conventional model.Comment: 17 pages, 10 figure

    Robust isothermal electric switching of interface magnetization: A route to voltage-controlled spintronics

    Full text link
    Roughness-insensitive and electrically controllable magnetization at the (0001) surface of antiferromagnetic chromia is observed using magnetometry and spin-resolved photoemission measurements and explained by the interplay of surface termination and magnetic ordering. Further, this surface in placed in proximity with a ferromagnetic Co/Pd multilayer film. Exchange coupling across the interface between chromia and Co/Pd induces an electrically controllable exchange bias in the Co/Pd film, which enables a reversible isothermal (at room temperature) shift of the global magnetic hysteresis loop of the Co/Pd film along the magnetic field axis between negative and positive values. These results reveal the potential of magnetoelectric chromia for spintronic applications requiring non-volatile electric control of magnetization.Comment: Single PDF file: 27 pages, 6 figures; version of 12/30/09; submitted to Nature Material

    Higgs lepton flavour violation: UV completions and connection to neutrino masses

    Get PDF
    We study lepton violating Higgs (HLFV) decays, first from the effective field theory (EFT) point of view, and then analysing the different high-energy realizations of the operators of the EFT, highlighting the most promising models. We argue why two Higgs doublet models can have a BR(h → τ μ) ∼ 0.01, and why this rate is suppressed in all other realizations including vector-like leptons. We further discuss HLFV in the context of neutrino mass models: in most cases it is generated at one loop giving always BR(h → τ μ) < 10−4 and typically much less, which is beyond experimental reach. However, both the Zee model and extended left-right symmetric models contain extra SU(2) doublets coupled to leptons and could in principle account for the observed excess, with interesting connections between HLFV and neutrino parameters
    corecore