10 research outputs found

    Pure 2D picture grammars and languages

    Get PDF
    A new syntactic model, called pure two-dimensional (2D) context-free grammar (P2DCFG), is introduced based on the notion of pure context-free string grammar. The rectangular picture generative power of this 2D grammar model is investigated. Certain closure properties are obtained. An analogue of this 2D grammar model called pure 2D hexagonal context-free grammar (P2DHCFG) is also considered to generate hexagonal picture arrays on triangular grids

    Computing with Membranes and Picture Arrays

    Get PDF
    Splicing systems were introduced by Tom Head [3] on biological considerations to model certain recombinant behaviour of DNA molecules. An effective extension of this operation to images was introduced by Helen Chandra et al. [5] and H array splicing systems were considered. A new method of applying the splicing operation on images of hexagonal arrays was introduced by Thomas et al. [12] and generated a new class of hexagonal array languages HASSL. On the other hand, P systems, introduced by Paun [6] generating rectangular arrays and hexagonal arrays have been studied in the literature, bringing together the two areas of theoretical computer science namely membrane computing and picture languages. P system with array objects and parallel splicing operation on arrays is introduced as a simple and effective extension of P system with operation of splicing on strings and this new class of array languages is compared with the existing families of array languages. Also we propose another P system with hexagonal array objects and parallel splicing operation on hexagonal arrays is introduced and this new class of hexagonal array languages is compared with the existing families of hexagonal array languages

    Using membrane computing for obtaining homology groups of binary 2D digital images

    Get PDF
    Membrane Computing is a new paradigm inspired from cellular communication. Until now, P systems have been used in research areas like modeling chemical process, several ecosystems, etc. In this paper, we apply P systems to Computational Topology within the context of the Digital Image. We work with a variant of P systems called tissue-like P systems to calculate in a general maximally parallel manner the homology groups of 2D images. In fact, homology computation for binary pixel-based 2D digital images can be reduced to connected component labeling of white and black regions. Finally, we use a software called Tissue Simulator to show with some examples how these systems wor

    LOCAL AND RECOGNIZABLE HEXAGONAL PICTURE LANGUAGES

    No full text
    In this paper we introduce hexagonal Wang tiles, local hexagonal picture languages, and recognizable hexagonal picture languages. We use hexagonal Wang tiles to introduce hexagonal Wang systems(HWS), a formalism to recognize hexagonal picture languages. It is noticed that the family of hexagonal picture languages defined by hexagonal Wang systems coincides with the family of hexagonal picture languages recognized by hexagonal tiling system. Similar to hv-domino systems, we define xyz-domino systems and prove that recognizable picture languages are characterized as projections of xyz-local picture languages. We also consider hexagonal pictures over one letter alphabet

    Petri Net Generating Hexagonal Arrays

    No full text
    corecore