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Abstract

A new syntactic model, called pure 2D context-free grammar (P2DCFG), is intro-
duced based on the notion of pure context-free string grammar. The rectangular
picture generative power of this 2D grammar model is investigated. Certain clo-
sure properties are obtained. An analogue of this 2D grammar model called pure
2D hexagonal context-free grammar (P2DHCFG) is also considered to generate
hexagonal picture arrays on triangular grids.
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1 Introduction

Syntactic techniques of generation of digital picture arrays have become es-
tablished as one of the major areas of theoretical studies in picture analysis,
basically due to the structure handling ability of the syntactic models. A num-
ber of two-dimensional (2D) rectangular and non-rectangular picture generat-
ing mechanisms such as two-dimensional grammars and automata have been
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introduced in the literature [1–4]. Two-dimensional matrix grammars [5], ar-
ray grammars [6,7], tiling systems [1,8], chain-code picture grammars [9], to
mention a few, are some of the picture generating devices.

Motivated by certain floor designs called “kolam” patterns [7], a 2D rectan-
gular picture array model which we call here as Siromoney matrix grammar
(SMG), was proposed by Siromoney et al. [5]. This is one of the earliest pic-
ture models, simple and easy to handle and has been widely investigated for
its theoretical properties and applications [10–15]. Generation of rectangu-
lar arrays takes place in this model in two phases with a sequential mode of
rewriting in the first phase generating strings of intermediate symbols and a
parallel mode of rewriting these strings in the second phase to yield rectan-
gular picture patterns. But the disadvantage of the SMG is that rectangular
arrays that maintain a proportion cannot be generated. The SMG′s have been
extended in [16] by allowing a finite set of tables of rules in the second phase
of generation. Although this model has more generative power than SMG,
it still cannot maintain proportion between the height and the width of the
arrays generated.

A generalization of SMG, which we call here as Siromoney array grammars
(SAG), has been made in [6] to overcome such a disadvantage of not main-
taining proportion but again this model SAG has two phases of derivation
with the first phase involving both column and row array concatenation oper-
ators ◦ and ¦. Although this feature is helpful to maintain proportion between
rows and columns of picture arrays, the disadvantage is that the column and
row operators ◦ and ¦ are not associative unlike string concatenation. This
requires use of suitable parentheses in the first phase of generation of SAG in
order to avoid ambiguity.

Another very general rectangular array generating model, called extended con-
trolled tabled L array system (ECTLAS) was proposed in [17], incorporat-
ing into arrays the developmental type of generation used in the well-known
biologically motivated L-systems [18]. Here the symbols either on the left,
right, up or down borders of a rectangular array are rewritten simultaneously
by equal length strings to generate rectangular picture arrays. Although this
model is general enough to generate interesting rectangular pictures and avoids
independent derivation phases as in SMG [5] and SAG [6], the disadvantage
is that this model [17] allows rewriting only at the borders of a rectangular
array.

In the Chomsky hierarchy and related types of grammars [19], the alphabet
is divided into two parts: nonterminal symbols and terminal symbols. Words
consisting of entirely terminal symbols are considered to be in the language
generated. But in the original rewriting systems of Thue such a distinction is
not made. Following this original rewriting systems of Thue, pure grammars
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considered in [20,21] use only a single set of symbols which may be used as
both terminal or nonterminal symbols. Pure grammars have been investigated
in formal string language theory for their language generating power and other
properties [22–28].

Here we introduce a new two-dimensional grammar based on pure context-
free rules, called pure 2D context-free grammar (P2DCFG), for rectangular
picture array generation. In this 2D model we allow rewriting any column or
any row of the rectangular array rewritten unlike the models in [5,16,17] and
we do not prescribe any priority of rewriting columns and rows as in [5,16] in
which the second phase of generation can take place only after the first phase
is over. We compare the generative power of the new 2D model with other
models considered in the literature [5,8,16,17]. Certain closure properties of
this 2D model are also obtained.

It is known [19] that controlling the derivation in string grammars by a regular
control language generally does not increase the generative power but here the
generative power increases when we associate a regular control language with
a P2DCFG. We also indicate possible application of P2DCFG to generate
pictures with complex primitives via the notion of interpretation. A prelimi-
nary version of this model and some of its properties were considered by the
authors in [29]. Although several 2D grammars have been proposed in the
literature, as far as we know no attempt has been made in the literature to
examine the effect of pure grammar type of rewriting of arrays except in a
specific model [17], called T0LAS, but this model allows rewriting only at the
borders of an array.

Motivated by the fact that hexagonal arrays and hexagonal patterns occur
in many places in the literature on picture processing and scene analysis, the
problem of generation of hexagonal arrays on triangular grids has been con-
sidered and formal models have been proposed in [30] and these models have
been further studied in [31,32]. Here we examine the problem of generation of
hexagonal arrays by introducing a pure 2D hexagonal context-free grammar
(P2DHCFG) analogous to the P2DCFG generating rectangular arrays.

2 Basic Definitions and Results

Let Σ be a finite alphabet. A word or a string w = a1a2 . . . an (n ≥ 1) over Σ
is a sequence of symbols from Σ. The length of a word w is denoted by |w|. The
set of all words over Σ, including the empty word λ with no symbols, is denoted
by Σ∗. We call words of Σ∗ horizontal words. For any word w = a1a2 . . . an,
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we denote by wT the vertical word

a1

...

an

We also define (wT )T = w. We set λT as λ itself.

A rectangular m × n array M over Σ (also called a picture array) is of the
form

M =

a11 · · · a1n

...
. . .

...

am1 · · · amn

where each aij ∈ Σ, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The set of all rectangular
arrays over Σ is denoted by Σ∗∗, which includes the empty array λ. Σ++

consists of all the rectangular arrays of Σ∗∗ excluding the empty array λ. i.e.
Σ++ = Σ∗∗−{λ}. We denote respectively by ◦ and ¦, the column concatenation
and row concatenation of arrays in Σ∗∗. In contrast to the case of strings, these
operations are partially defined, namely, for any X,Y ∈ Σ∗∗, X ◦ Y is defined
if and only if X and Y have the same number of rows. Similarly X ¦ Y is
defined if and only if X and Y have the same number of columns.

We refer to [1–3] for array grammars and two-dimensional languages. For
notions of formal language theory we refer to [19]. We briefly recall pure
context-free grammars [21] and the rectangular picture generating models in
[1,5,8,16,17].

A pure context-free grammar [21] is G = (Σ, P, Ω) where Σ is a finite alphabet,
Ω is a set of axiom words and P is a finite set of context-free rules of the form
a → α, a ∈ Σ, α ∈ Σ∗. Derivations are done as in a context-free grammar
except that unlike a context-free grammar, there is only one kind of symbol,
namely the terminal symbol. The language generated consists of all words
generated from each axiom word.

Example 1 The pure context-free grammar G = (Σ = {a, b, c}, P = {c →
acb}, Ω = {acb}) generates the language {ancbn|n ≥ 1}.

In the 2D grammar model introduced in [5], which we call as Siromoney matrix
grammar, a horizontal word Si1 . . . Sin over intermediate symbols is generated
by a Chomskian grammar. Then from each intermediate symbol Sij a vertical
word of the same length over terminal symbols is derived to constitute the jth
column of the rectangular array generated. We recall this model restricting to
regular and context-free cases.
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Definition 1 A Siromoney matrix grammar [5] is a 2−tuple (G1, G2) where
G1 = (H1, I1, P1, S) is a regular or a context-free grammar,
• H1 is a finite set of horizontal nonterminals,
• I1 = {S1, S2, · · · , Sk}, a finite set of intermediates, H1 ∩ I1 = ∅,
• P1 is a finite set of production rules called horizontal production rules,
• S is the start symbol, S ∈ H1,
G2 = (G21, G22, · · · , G2k) where G2i = (V2i, T, P2i, Si), 1 ≤ i ≤ k are regular
grammars,
• V2i is a finite set of vertical nonterminals, V2i ∩ V2j = ∅, i 6= j,
• T is a finite set of terminals,
• P2i is a finite set of right linear production rules of the form
X −→ aY or X −→ a where X, Y ∈ V2i, a ∈ T
• Si ∈ V2i is the start symbol of G2i.
The type of G1 gives the type of G ; so we speak about regular or context-free
Siromoney matrix grammars if G1 is regular or context-free respectively.

Derivations are defined as follows: First a string Si1Si2 · · · Sin ∈ I∗1 is gener-
ated horizontally using the horizontal production rules of P1 in G1. That is,
S ⇒ Si1Si2 · · · Sin ∈ I∗1 .
Vertical derivations proceed as follows: We write

Ai1 · · · Ain

⇓
ai1 · · · ain

Bi1 · · · Bin

if Aij → aijBij are rules in P2j, 1 ≤ j ≤ n. The derivation terminates if
Aj → amj are all terminal rules in G2.

The set L(G) of picture arrays generated by G consists of all m × n arrays
[aij] such that 1 ≤ i ≤ m, 1 ≤ j ≤ n and S ⇒∗

G1
Si1Si2 · · · Sin ⇒∗

G2
[aij] . We

denote the picture language classes of regular, context-free Siromoney matrix
grammars by RML, CFML respectively.

The regular/context-free Siromoney matrix grammars were extended in [16]
by specifying a finite set of tables of rules in the second phase of generation
with each table having either right-linear nonterminal rules or right-linear
terminal rules. The resulting families of picture array languages are denoted
by TRML and TCFML and are known to properly include RML and CFML
respectively.

We now recall the rectangular array generating model considered in [17].
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Definition 2 A table 0L array system (T0LAS) [17] is G = (T,P ,M0) where
• T is a finite nonempty set (the alphabet of G);
• P is a finite set of tables, {t1, t2, . . . , tk}, and each ti, i = 1, . . . , k, is a left,
right, up, or down table consisting respectively, of a finite set of left, right, up,
or down rules only. The rules within a table are context-free in nature but all
right hand sides of rules within the same table are of the same length;
• M0 ∈ Σ++ is an axiom array of G.

A derivation in G takes place as follows: Starting with a rectangular array
M1 ∈ Σ++, all the symbols of either the leftmost/rightmost column or the
uppermost/bottommost row of M1 are rewritten in parallel respectively by
the rules of a left or a right table or an up or a down table to yield a rect-
angular array M2. A set M(G) of rectangular arrays is called a table 0L
array language if and only if there exists a table 0L array system G such that
M(G) = {M |M0 ⇒∗ M,M ∈ T ∗∗}. The family of table 0L array languages is
denoted by T0LAL.

Another interesting model called tiling system (TS) describing rectangular
picture arrays was introduced in [1,8]. This model is based on a well known
characterization of recognizable string languages in terms of local languages
and projections. In fact the notion of a local string language is extended to two
dimensions. The idea [1] here is that a “window” of size 2×2 is moved around
a rectangular picture or array of terminal symbols and a record is made of
2 × 2 tiles (or 2 × 2 rectangular arrays) observed through the window. The
order and the number of occurrences of these tiles is not taken into account.
If the set of recorded 2 × 2 tiles is included in a given set of 2 × 2 tiles, then
the rectangular array is ‘accepted’ as a member of a ‘local picture language’
to be formed. A picture language of rectangular arrays is said to be tiling
recognizable [1] if it is the image under a projection, which is a letter-to-letter
mapping, of a local picture language. We now briefly recall these notions.

Given a rectangular picture array p of size m × n over an alphabet Σ, p̂ is
an (m + 2) × (n + 2) picture array obtained by surrounding p by the special
symbol # /∈ Σ in its border. A square picture array of size 2 × 2 is called a
tile. The set of all tiles which are sub-pictures of p is denoted by B2×2(p).

Definition 3 Let Γ be a finite alphabet. A two-dimensional language or a
picture array language L ⊆ Γ∗∗ is called local if there exists a finite set Θ of
tiles over the alphabet Γ ∪ {#} such that L = {p ∈ Γ∗∗|B2×2(p̂) ⊆ Θ}. The
family of local picture array languages will be denoted by LOC [1,8].

Definition 4 A tiling system (TS) is a 4-tuple T = (Σ, Γ, Θ, π) where Σ
and Γ are two finite alphabets, Θ is a finite set of tiles over the alphabet
Γ ∪ {#} and π : Γ → Σ is a projection.
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The tiling system T recognizes a picture array language L over the alphabet Σ
as follows: L = π(L′) where L′ = L(Θ) is the local two-dimensional language
over Γ corresponding to the set of tiles Θ. We write L = L(T ) and we say that
L is the language recognized by T. A picture array language L ⊆ Σ∗∗ is tiling
recognizable if there exists a tiling system T such that L = L(T ). The family
of tiling recognizable picture array languages is denoted by REC [1,8].

3 Pure 2D Context-free Grammars

Based on the notion of pure context-free rules, a new two-dimensional gram-
mar is introduced for picture generation. The salient feature of this model is
that the shearing effect in replacing a subarray of a given rectangular array is
taken care of by rewriting a row or a column of symbols in parallel by equal
length strings and by using only terminal symbols as in a pure string grammar
[21]. This new model is related to the model T0LAS in [17] in the sense that
a column or row of symbols of a rectangular array is rewritten in parallel.
This feature as in [17] incorporates into arrays the parallel rewriting feature
of the well-known and widely investigated Lindenmayer systems [18]. But the
difference between this new model and the T0LAS in [17] is that the rewriting
is done only at the “edges” of a rectangular array in a T0LAS whereas here
we allow rewriting in parallel of any column or any row of symbols. We now
define the new grammar model, a preliminary version of which was introduced
by the authors in [29].

Definition 5 A pure 2D context-free grammar (P2DCFG) is a 4-tuple G =
(Σ, Pc, Pr,M0) where
• Σ is a finite set of symbols ;
• Pc = {tci

|1 ≤ i ≤ m}, Pr = {trj
|1 ≤ j ≤ n};

Each tci
, (1 ≤ i ≤ m), called a column table, is a set of context-free rules of

the form a → α, a ∈ Σ, α ∈ Σ∗ such that for any two rules a → α, b → β in
tci

, we have |α| = |β| where |α| denotes the length of α;
Each trj

, (1 ≤ j ≤ n), called a row table, is a set of context-free rules of the
form c → γT , c ∈ Σ and γ ∈ Σ∗ such that for any two rules c → γT , d → δT in
trj

, we have |γ| = |δ|;
• M0 ⊆ Σ∗∗ − {λ} is a finite set of axiom arrays.

Derivations are defined as follows: For any two arrays M1,M2, we write M1 ⇒
M2 if M2 is obtained from M1 by either rewriting a column of M1 by rules of
some column table tci

in Pc or a row of M1 by rules of some row table trj
in

Pr. ⇒∗ is the reflexive transitive closure of ⇒ .
The picture array language L(G) generated by G is the set of rectangular pic-
ture arrays {M |M0 ⇒∗ M ∈ Σ∗∗, for some M0 ∈ M0}. The family of picture
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M01 ⇒
x . . x

z y y z

x . . x

⇒

x . . x

x . . x

z y y z

x . . x

x . . x

⇒

x . . x

x . . x

x . . x

z y y z

x . . x

x . . x

x . . x

⇒

x . . . x

x . . . x

x . . . x

z y y y z

x . . . x

x . . . x

x . . . x

= M1

Fig. 1. Derivation M01 ⇒∗ M1

x x x y x x x

. . . z . . .

. . . z . . .

. . . z . . .

. . . z . . .

Fig. 2. A picture array M2

array languages generated by pure 2D context-free grammars is denoted by
P2DCFL.

Example 2 Consider the pure 2D context-free grammar G1 = (Σ1, Pc1 , Pr1 , {M01})
where Σ1 = {x, y, z, .}, Pc1 = {tc1}, Pr1 = {tr1}

tc1 = {. → .., y → yy}, tr1 =





.

y → y

.

,

x

z → z

x





, M01 =

x . x

z y z

x . x

A sample derivation M01 ⇒∗ M1 , on using tc1 , tr1 , tr1 , tc1 in this order, is given
in Figure 1. A column or row of symbols in boldface in Figure 1, indicates the
column or row rewritten in the subsequent step. Each of the arrays occurring
in the derivation given belongs to the picture array language generated by G1.

Example 3 Consider the pure 2D Context-free grammar G2 = (Σ2, Pc2 , Pr2 , {M02})
where Σ2 = {x, y, z, .}, Pc2 = {tc2}, Pr2 = {tr2}

tc2 = {y → xyx, z → .z.} tr2 =





x → x

.
, y → y

z





M02 =
x y x

. z .

G2 generates picture arrays M2 of the form shown in Figure 2.
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Here again we note that the number of rows in the generated picture ar-
ray need not have any proportion to the number of columns but will have an
equal number of columns to the left and right of the middle column (yz . . . z)T .

We now examine certain closure properties of P2DCFL. We also consider geo-
metric operations of transposition, reflection about base, reflection about leg.
The operation of transposition of a rectangular array interchanges the rows
and columns. The operation of reflection about the base reflects the rectan-
gular array about the bottommost row and of reflection about the leg reflects
the rectangular array about the leftmost column.

Theorem 1 The class of P2DCFL is not closed under the operations of
union, column catenation, row catenation but the class is closed under the
geometric operations of transposition, reflection about the base and reflection
about the leg.

Proof Let the alphabet be {a, b, c, x, y}. Non-closure under union can be
seen as follows: Consider the picture languages L1 consisting of rectangu-
lar arrays with a middle column of c′s and equal size arrays over a′s to the
left and b′s to the right of this column of c′s and L2 consisting of simi-
lar arrays but with x′s and y′s in the place of a′s and b′s. In other words
L1 = {X1 ◦ (cn)T ◦ Y1|X1 ∈ {a}++, Y1 ∈ {b}++, |X1|c = |Y1|c, n ≥ 1} and
L2 = {X2 ◦ (cn)T ◦ Y2|X2 ∈ {x}++, Y2 ∈ {y}++, |X2|c = |Y2|c, n ≥ 1} where
|X|c stands for the number of columns of X. Note that X1 is an array over
a and Y1 is an array over b. By the definition of the operation ◦, the array
X1 ◦ (cn)T ◦ Y1 can be formed only when X1 and Y1 have as many rows as the
number of c′s in the middle column of c′s. Likewise for X2 ◦ (cn)T ◦ Y2. L1 is
generated by a P2DCFG with a column table consisting of a rule c → acb and

a row table with rules a → a

a
, b → b

b
, c → c

c
. Likewise L2 is also generated by

a similar P2DCFG. It can be seen that L1 ∪ L2 cannot be generated by any
P2DCFG, since such a grammar will require a column table with rules of the
forms c → acb and c → xcy. But then this will yield arrays not in the union.
Non-closure under column catenation of arrays can be seen by considering
L1 ◦ L2 and noting that any P2DCFG generating L1 ◦ L2 will again require
a column table with rules c → acb and c → xcy but then this will lead to
generating arrays not in the column catenation L1 ◦ L2. Non-closure under
row catenation can be seen in a similar manner.
If L is a picture array language generated by a P2DCFG G and LT is the
transposition of L, then the P2DCFG G′ to generate LT is formed by taking
the column tables of G as row tables and row tables as column tables but for
a rule a → α in a column table of G, the rule a → αT (α ∈ Σ∗∗) is added in
the corresponding row table of G′ and likewise for a rule b → βT (β ∈ Σ∗∗) in
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a row table of G, the rule b → β is added in the corresponding column table
of G′. Closure under the operations of reflection about base, reflection about
leg can be seen in a similar manner. 2

We now compare the new 2D grammar model of pure 2D context-free gram-
mar introduced here with those in [1,5,8,16,17].

Theorem 2 The family of P2DCFL is incomparable with the families of
RML and CFML but not disjoint with these families.

Proof The picture language consisting of rectangular arrays of all sizes m ×
n (m,n ≥ 1) over a single symbol a is in P2DCFL ∩RML. In fact it is gen-
erated by a regular Siromoney matrix grammar G with rules in the horizontal
phase given by S → S1S, S → S1 where S1 is an intermediate symbol and with
rules in the vertical phase given by S → (aS1)

T , S1 → a. A corresponding pure
2D CF grammar consists of a column table with the rule a → aa and a row

table with the rule a → a

a
and the axiom array a.

The incomparability with CFML can be seen as follows: The P2DCFL in ex-
ample 2 cannot be generated by any context-free Siromoney matrix grammar
and hence by any regular Siromoney matrix grammar since each of the gener-
ated pictures of example 2, has an equal number of rows above and below the
middle row zy . . . yz. On the other hand a picture language consisting of rect-
angular arrays of the form M1 ◦M2 where M1 is a rectangular array over the
symbol a and M2 over the symbol b with M1 and M2 having an equal number
of columns can be generated by a context-free Siromoney matrix grammar. In
fact the language of horizontal words is Sn

1 Sn
2 (S1, S2 are intermediate sym-

bols) in the first phase and S1 → (aS1)
T , S1 → a, S2 → (bS2)

T , S2 → b are
the rules in the vertical phase. This picture language, cannot be generated by
any pure 2D context-free grammar since an argument similar to the fact that
the string language {anbn|n ≥ 1} is not a pure CFL [21] can be done in the
two-dimensional case also.
The incomparability of P2DCFL with RML can also be seen by noting that
the picture language with rectangular arrays each row of which is a word in
a3b3(ab)∗ cannot be generated by any P2DCFG. This can be seen by an ar-
gument analogous to the fact [21] that the string language a3b3(ab)∗ is not a
pure CFL. On the other hand is generated by the RMG with the language of
the horizontal phase as S3

1S
3
2(S1S2)

∗ and with rules in the vertical phase given
by S1 → (aS1)

T , S1 → a, S2 → (bS2)
T , S2 → b. 2

Theorem 3 The family of P2DCFL is incomparable with the families of
TRML and TCFML but not disjoint with these families.

Proof The proper inclusions RML ⊂ TRML,CFML ⊂ TCFML are known
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[16]. So due to the incomparability (Theorem 2) of P2DCFL with RML and
CFML , it is enough to note that the picture array language of example 2
generating picture arrays as shown in Figure 1 can neither belong to TRML
nor to TCFML, in view of the fact that in the generated picture arrays (Fig-
ure 1) of example 2, each has an equal number of rows above and below the
middle row zy . . . yz and no TRMG or TCFMG can generate arrays with
this feature. 2

Theorem 4 The family P2DCFL contains languages that cannot be de-
scribed by any T0LAS.

Proof Since in a T0LAS, a rectangular array can “grow” only at its bor-
ders by definition, it is clear that the picture array language generated by a
P2DCFG in example 3 consisting of picture arrays in the shape of token T
(Figure 2) having an equal number of x′s to the left and right of the middle
column, cannot be generated by any T0LAS. 2

Theorem 5 Every language in the family T0LAL is a coding of a P2DCFL.

Proof Let L be a picture array language generated by a T0LAS [17] G =
(T,P ,M0). We construct a pure 2DCFG G′ as follows: For each symbol a in
the alphabet T of G, we introduce a new distinct symbol A. Let T ′ = {A|a ∈
T}. Each rule of the form a → a1a2 · · · amb, (b, ai(1 ≤ i ≤ m) ∈ T ) in a right
table t of G, is replaced by a rule A → a1a2 · · · amB, A, B ∈ T ′. Here A cor-
responds to a and B to b. Each rule of the form a → a1a2 · · · amb, (b, ai(1 ≤ i ≤
m) ∈ T ) in a down table t of G, is replaced by a rule A → (a1a2 · · · amB)T , A, B ∈
T ′. Likewise the rules in left and up tables are replaced by rules constructed
with a similar idea. Then G′ = (T ∪ T ′,P ′, {M ′

0}) where P ′ consists of the
tables of G with each table having the rules modified as mentioned above. The
modified left and right tables of G become the column tables of G′ and the
modified up and down tables of G become the row tables of G′. The axiom
array M

′
0 is M0 with its border symbols replaced by the new symbols. Define

a coding c (a letter to letter mapping) by c(A) = a where A is the new symbol
introduced corresponding to a. It can be seen that c(L(G′)) = L. 2

Theorem 6 The family of P2DCFL is incomparable with the families LOC
[1,8] and REC [1,8].

Proof The language of square picture arrays with 1′s in the main diago-
nal and 0′s in other positions is known [1,8] to be in LOC and the language
of square picture arrays over 0′s is known [1,8] to be in REC but both these
languages cannot be generated by any P2DCFG for it can be seen that the
language of square arrays cannot be generated by a P2DCFG with at most
two symbols 0, 1. On the other hand a picture array language L1 consisting
of arrays M = M1 ◦ c ◦M1 where M1 is a string over the symbol a (M is a
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picture array with only one row) is generated by a P2DCFG with a column
rule c → aca but L1 is known [1,8] to be not in REC and hence not in LOC.2

4 P2DCFG with regular control

In formal language theory [19], one of the tools in regulating rewriting of words
is to control the sequence of application of rules of a grammar by requiring
the control words to belong to a language. Generally, if the control words
constitute a regular language, the generative power of a grammar might not
increase. Here we associate a regular control language with a pure 2D CFG
and notice that the generative power increases.

Definition 6 A pure 2D context-free grammar with a regular control is
Gc = (G,Lab(G), C) where G is a pure 2D context-free grammar, Lab(G) is a
set of labels of the tables of G and C ⊆ Lab(G)∗ is a regular (string) language.
The words in Lab(G)∗ are called control words of G. Derivations M1 ⇒w M2

in Gc are done as in G except that if w ∈ Lab(G)∗ and w = l1l2 . . . lm, then the
tables of rules with labels l1, l2, . . . , lm are successively applied starting with
M1 to yield M2. The picture array language generated by Gc consists of all pic-
ture arrays obtained from the axiom array of G with the derivations controlled
as described above. We denote by (R)P2DCFL the family of picture array
languages generated by pure 2D context-free grammars with a regular control.

Theorem 7 The family of P2DCFL is properly contained in (R)P2DCFL.

Proof The containment follows from the fact that a P2DCFL is generated
by a P2DCFG G with the regular control language Lab(C)∗.
The proper containment can be seen as follows: Consider the picture array
language consisting of the picture arrays as shown in Figure 1 but with sizes
(2n+1)×(n+2), n ≥ 1. In each array there is a proportion between the height
(the number of rows in a picture array) and width (the number of columns
in a picture array). The number of rows above and below the middle row
zy . . . yz equals the number of columns between the leftmost and rightmost
columns, namely, (x . . . xzx . . . x)T . This picture array language is generated
by the pure 2D context-free grammar G in example 2 with a regular control
language {(l1l2)n|n ≥ 1} on the labels l1, l2 of the tables tc1 , tr1 respectively. In
fact the tables of rules generating the picture array language in example 2 are

tc1 = {. → .., y → yy}, tr1 =





.

y → y

.

,

x

z → z

x





. Since the control language

on the labels of the tables consists of words (l1l2)
n, an application of the rules
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of the table tc1 is immediately followed by an application of the rules of the
table tr1 so that the array rewritten grows one column followed by one row
above and one row below the middle row zy . . . yz. The resulting array is then
collected in the language generated. This process is repeated so that the arrays
generated have a proportion between the width and height as mentioned.2

Generating “square arrays” over one symbol a is of interest in picture ar-
ray generation. Such square arrays can be generated by a ‘simple’ P2DCFG
with a regular control. In fact the P2DCFG ({a}, {tc}, {tr}, a) where tc =
{a → aa}, tr = {a → (aa)T} with the regular control language {(l1l2)n|n ≥ 1}
where l1, l2 are respectively the labels of tc, tr can be seen to generate the
picture array language consisting of square arrays over one symbol a.

We now indicate applications of the P2DCFG and P2DCFG with regular
control in generating interesting classes of chain code [9] pictures or “kolam”
[7] pictures. This is done by replacing the letter symbols in the picture arrays
generated by these grammars by ‘primitive patterns’. This is a well-known
technique to generate such picture patterns. Each symbol of a rectangular
array is considered to occupy a unit square in the rectangular grid so that a
row of symbols or a column of symbols in the array respectively occupies a
horizontal or a vertical sequence of adjacent unit squares. A mapping i, called
an interpretation, from the alphabet Σ = {a1, a2, . . . , an} of a P2DCFG G
to a set of primitive picture patterns {p1, p2, . . . pm} is defined such that for
1 ≤ i ≤ n, i(ai) = pj, for some 1 ≤ j ≤ m. A primitive picture pattern could
be a blank, denoted by b. Given a picture array M over Σ, i(M) is obtained
by replacing every symbol a ∈ M by the corresponding picture pattern i(a).

For instance, in Example 2, if we define, the interpretation mapping i by
i(x) = i(z) = | , i(y) = − and i(.) = b, using two chain code primitives,
namely, | , − , then the interpretation i(M1) of the array M1 in Figure 1
will give a picture of the alphabetic letter H.

Likewise if the primitive picture patterns are those used in “kolam” pictures,
we can obtain “kolam” patterns [7] from pure 2DCFL via suitable interpre-
tation. “Kolam” [33] refers to decorative artwork drawn on the floor with
the kolam drawing generally starting with a certain number of pattern points
and curly lines going around these points. We illustrate by giving a pure 2D
context-free grammar with a regular control to generate the rectangular ar-
rays, a member of which is shown in Figure 3 and an interpretation i that
yields the “kolam” patterns, a member of which is shown in Figure 5. The
primitive patterns [33] used in a “kolam” pattern are shown in Figure 4.

Consider the pure 2D context-free grammar with regular control
Gc1 = (G,Lab(G), C) where G = (Σ, Pc, Pr,M0), with
Σ = {u, ut, ub, ul, v, vt, vb, vr, x, y, z, w, s, s1, s2},

13



M =

z z z z z ut x x x vt z z z z z

ul s s s s s1 x x x s2 s s s s vr

y y y y y u x x x v y y y y y

u s s s s s x x x s s s s s v

y y y y y u x x x v y y y y y

u s s s s s x x x s s s s s v

w w w w w ub x x x vb w w w w w

Fig. 3. An Array M generated by Gc1

Pc = {tc1, tc2}, Pr = {tr1}, Lab(G) = {tc1, tc2, tr1}, C = {(tc1tc2tr1)n|n ≥ 1}.

The tables of rules are given by

tc1 = {ut → zutx, u → yux, ub → wubx, s1 → ss1x, s → ssx},

tc2 = {vt → vtz, v → vy, vb → vbw, s2 → s2s, s → ss},

tr1 =





ul

ul → y

u

,

s

s → y

s

,

s1

s1 → u

s

,

x

x → x

x

,

s2

s2 → v

s

,

vr

vr → y

v





M0 =

z z ut vt z z

ul s s1 s2 s vr

w w ub vb w w

The interpretation i is given by

i(ul) = i(ut) = i(ub) = i(u) = u, i(z) = z, i(x) = x, i(s1) = i(s2) = i(s) = s,
i(vr) = i(vt) = i(vb) = i(v) = v, i(w) = w, i(y) = y

The axiom array M0 yields the array M (Figure 3) with the derivation con-
trolled by the control word w = tc1tc2(tc1tc2tr1)

2. i.e. M0 ⇒w M. The inter-
pretation i applied to the array M gives the “kolam” pattern in Figure 5.
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a : b : c : d : z : x :

y : u : v : s : w :

a, b, c, d : saddle x, y :pupil u, v : fan s : diamond z, w : drop

Fig. 4. Primitive patterns of a “kolam” pattern

Fig. 5. A “kolam” pattern

5 Pure 2D Hexagonal Context-free Grammars

Hexagonal array generating models were introduced in [30] by considering
hexagonal arrays on a triangular grid. The notion of ‘catenation’of strings and
column catenation and row catenation of rectangular arrays were extended in
[30] to ‘arrowhead catenation’ of hexagonal arrays where the ‘arrowhead’ is
specific kind of a hexagonal array. In fact it is observed in [30] that on treat-
ing a hexagonal array as a two-dimensional representation of a three dimen-
sional block, the two-dimensional representation captured the effect of placing
a block having one face equal to a hidden face of the original block (see [30]
for more details on this notion and other motivations). In [31,32] the study on
generation of hexagonal arrays is continued. Here we define pure 2D hexag-
onal context-free grammars (P2DHCFG) analogous to the rectangular case
considered earlier and examine its properties. We first recall from [30] relevant
notions pertaining to hexagonal arrays.

We consider a triangular grid made up of lines equally inclined and paral-
lel to three fixed directions (upper right ↗ , upper left ↖ , down ↓ ) and
their duals (lower left ↙ , lower right ↘ up ↑ ). For formal definitions re-
lating to hexagonal arrays, we refer to [30]. An example hexagonal array H
is shown in Figure 6(Left). An “arrowhead” hexagonal array Ha (which is a
convex hexagonal array) is shown in Figure 6(right). (In the “arrowhead” Ha

the six “sides”, read anti-clockwise, are bxxx, xxxb, bb, bbbb, bb whereas in
the hexagonal array H the six “sides” are bbbb, bbbb, bbbb, bbbb, bbbb, bbbb. )
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We will denote the set of all hexagonal arrays over Σ by Σh∗∗.

Now we can define a pure 2D hexagonal context-free grammar analogous to

b

b b

b x b b

b a x b b b

a a x x b

b a a b x b

a a x x

b a a b b

a a x x

b a a b b

b a b x

b b b

b b

Fig. 6. Left: A hexagonal array H0 Right: An “arrowhead” hexagonal array Ha

P2DCFG by requiring only one kind of symbol and rewriting of a hexagonal
array taking place with rules that rewrite all the symbols in an “arrowhead of
thickness one” amounting to context-free rewriting. An “arrowhead” of thick-
ness one is a degenerate arrowhead hexagonal array. The arrowhead rewriting
can be in any of the six directions, namely ↗, ↖, ↓ and their duals. This
corresponds to column or row rewriting in the rectangular case of P2DCFG.

Definition 7 A pure 2D hexagonal context-free grammar (P2DHCFG) is
G = (Σ, Pur, Pul, Pd, Pll, Plr, Pu,H0) where
• Σ is a finite set of symbols ;
• Pur = {turi

|1 ≤ i ≤ m};
Each turi

, (1 ≤ i ≤ m), called a UR table, is a set of context-free rules of the
form a → α, a ∈ Σ, α ∈ Σ∗ such that for any two rules a → α, b → β in turi

,
we have |α| = |β| where |α| denotes the length of α;
Each of the other five components Pul, Pd, Pll, Plr, Pu is similarly defined.
• H0 ⊆ Σh∗∗ − {λ} is a finite set of axiom arrays that are hexagonal arrays.

Derivations are defined as follows: For any two hexagonal arrays H1, H2, we
write H1 ⇒ H2 if H2 is obtained from H1 by either rewriting all the symbols
in an “arrowhead of thickness one” of H1 by rules of a relevant table. ⇒∗ is
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the reflexive transitive closure of ⇒ .
The hexagonal picture array language L(G) generated by G is the set of hexag-
onal picture arrays {H|H0 ⇒∗ H ∈ Σh∗∗, for some H0 ∈ H0}. The family of
hexagonal picture array languages generated by pure 2D hexagonal context-
free grammars is denoted by P2DHCFL.

Example 4 Consider the following P2DHCFG with alphabet Σ = {a, x, b}.
We mention only the axiom hexagonal array and the tables of rules. The ax-
iom hexagonal array H0 is shown in Figure 6 (Left). We have only one table
of rules that can be used to rewrite an “arrowhead of thickness one”, namely
bxx < x > xxb where we have employed a compact notation [30] to indicate
the fact that the symbol (here x) enclosed in <> is the “corner” of the “arrow-
head”. The table of rules is given by tur = {x ↗ axb, b ↗ bbb}. A hexagonal
array H generated by this P2DHCFG is shown in Figure 7. In fact in the
hexagonal array H0 (Fig. 6 (Left)), the symbols in the ’arrow head’ that are
rewritten by the rules of the table tur, are shown in bold and after rewriting
the array H0 yields H (Figure 7).

Among the different hexagonal array generating systems, table 0L hexagonal

b

b b

b b b

b x b b

b a x b

b a a x b

a a a b

b a a x b

a a a b

b a a x b

a a a b

b a a b

b a b

b b

b

Fig. 7. A generated hexagonal array

array system (T0LHAS) [30] is an analogue of the corresponding rectangular
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system T0LAS [17]. In a T0LHAS “growth” (rewriting) can take place only
at the “borders” of the hexagonal array. The family of hexagonal arrays gen-
erated is denoted by T0LHAL [30].

Here comparison of the generative power of the family P2DHCFL with the
family T0LHAL can be made. We state the result in the following theorem.

Theorem 8 The family P2DHCFL contains languages that cannot be de-
scribed by any T0LHAS.
This statement again is a consequence of the fact that in a T0LHAS, “growth”
in a hexagonal array can take place only in any of the six directions but only
at the borders. But in a P2DHCFG such a growth can take place even in the
interior as in example 4 (Figure 7). 2

6 Conclusion

A syntactic two-dimensional grammar model, called pure 2D context-free
grammar, initially proposed in [29], based on the notion of pure string gram-
mar [21] and generating rectangular picture arrays, has been considered here
and its properties studied. The model is also modified suitably to give rise to
an analogous 2D grammar model called pure 2D hexagonal context-free gram-
mar generating hexagonal arrays. In the rectangular case P2DCFG has been
extended in [34] defining extended pure 2D hexagonal context-free grammar
(EP2DHCFG) by allowing use of variables in the grammar and its rules and
employing the well-known squeezing mechanism of obtaining arrays generated
over a terminal alphabet. This notion has been extended to the hexagonal
case in [35]. Also in the hexagonal case, the effect of regular control has been
examined in [35] both for P2DHCFG and EP2DHCFG. There also remain
problems in both the rectangular and hexagonal cases of comparison with
other 2D grammar models that have not been considered here. For example in
the rectangular case comparison with the model in [36] and in the hexagonal
case comparison with the local and recognizable hexagonal models in [37,38]
can be made. The application of these grammars via the interpretation consid-
ered for handling more complex primitive patterns could be further explored.
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