1,276 research outputs found

    Bio-inspired friction switches: adaptive pulley systems

    Get PDF
    Frictional influences in tendon-driven robotic systems are generally unwanted, with efforts towards minimizing them where possible. In the human hand however, the tendon-pulley system is found to be frictional with a difference between high-loaded static post-eccentric and post-concentric force production of 9-12% of the total output force. This difference can be directly attributed to tendon-pulley friction. Exploiting this phenomenon for robotic and prosthetic applications we can achieve a reduction of actuator size, weight and consequently energy consumption. In this study, we present the design of a bio-inspired friction switch. The adaptive pulley is designed to minimize the influence of frictional forces under low and medium-loading conditions and maximize it under high-loading conditions. This is achieved with a dual-material system that consists of a high-friction silicone substrate and low-friction polished steel pins. The system, designed to switch its frictional properties between the low-loaded and high-loaded conditions, is described and its behavior experimentally validated with respect to the number and spacing of pins. The results validate its intended behavior, making it a viable choice for robotic tendon-driven systems.Comment: Conference. First submission, before review

    Some Observations about the Suicide of the Adulteress in the Modern Novel

    Get PDF
    Babis Dermitzakis posits in his article Some Observations about the Suicide of the Adulteress in the Modern Novel that in three major male-authored European novels -- Madame Bovary, Anna Karenina, and ThĆ©rĆØse Raquin -- the protagonists are wives who commit adultery ending in suicide. In contrast, texts by women authors of the period show no similar description and perception of adultery by women. Dermitzakis suspects that the male writers did not simply fictionalize a specific social behavior or condition; rather, they likely imported their own prejudices about women\u27s adultery -- and more generally about women\u27s sexuality -- into their writing. Biographical evidence of the three authors appears to support such a hypothesis

    New tendencies and advances in modern Statigraphical Research

    Get PDF
    Ī”ĪµĪ½ Ī“Ī¹Ī±Ļ„ĪÆĪøĪµĻ„Ī±Ī¹ Ļ€ĪµĻĪÆĪ»Ī·ĻˆĪ·no abstract availabl

    PREFACE

    Get PDF
    No abstract (available)

    Evolutionary history of regulatory variation in human populations

    Get PDF
    Genetic variation in the regulation of gene expression is likely to be a major contributor to phenotypic variation in humans, and it also constitutes an important target of recent natural selection in human populations and plays a major role in morphological evolution. The increasing amount of data of genome and transcriptome variation is now leading to a better annotation of regulatory elements and a growing understanding of how the evolution of gene regulation has shaped human diversity. In this review, we discuss the evolutionary history of the variation in the expression of protein-coding genes in humans. We outline the current methodology for mapping regulatory variants and their distribution in human populations. General mechanisms of regulatory evolution are discussed with a special emphasis on different selective processes targeting gene regulation in human

    Genetic and epigenetic contribution to complex traits

    Get PDF
    Much of the recent advances in functional genomics owe to developments in next-generation sequencing technology, which has contributed to the exponential increase of genomic data available for different human disease and population samples. With functional sequencing assays available to query both the transcriptome and the epigenome, annotation of the non-coding, regulatory genome is steadily improving and providing means to interpret the functional consequences of genetic variants associated with human complex traits. This has highlighted the need to better understand the normal variation in various cellular phenotypes, such as epigenetic modifications, and their transgenerational inheritance. In this review, we discuss different aspects of epigenetic variation in the context of DNA sequence variation and its contribution to complex phenotype

    The resolution of the genetics of gene expression

    Get PDF
    Understanding the influence of genetics on the molecular mechanisms underpinning human phenotypic diversity is fundamental to being able to predict health outcomes and treat disease. To interrogate the role of genetics on cellular state and function, gene expression has been extensively used. Past and present studies have highlighted important patterns of heritability, population differentiation and tissue-specificity in gene expression. Current and future studies are taking advantage of systems biology-based approaches and advances in sequencing technology: new methodology aims to translate regulatory networks to enrich pathways responsible for disease etiology and 2nd generation sequencing now offers single-molecular resolution of the transcriptome providing unprecedented information on the structural and genetic characteristics of gene expression. Such advances are leading to a future where rich cellular phenotypes will facilitate understanding of the transmission of genetic effect from the gene to organis

    Planktonic foraminiferal ecozones: response of the pelagic environment to palaeoclimatic changes in the eastern Mediterranean Sea

    Get PDF
    A detailed study of the planktonic environment of the eastern Mediterranean Sea has permitted the reconstruction of the climatic history of this part of the basin during the time span from 9.7 to 6.6 Ma. The eastern Mediterranean Sea is confirmed as having a strong sensitivity to the climatic changes that occurred during that timespan. One of the very few complete hemipelagic successions of the Upper Miocene in Mediterranean is found in Gavdos island (SW Crete). Quantitative and qualitative modifications of the planktonic foraminiferal communities observed in Metochia section exhibit a sequence of biological events summarized in 11 successive main time intervals. The bioevents are defined by frequency peaks and/or local (re)-occurrences or (temporary) disappearances of some of the taxa, in association with more or less important fluctuations of the more common species. The planktonic foraminifera show a strong correlation with sea surface temperature variations and with changes in the physical and chemical properties of the upper water column caused by the climatic instability. Two prominent shifts in faunal parameters divide the period recorded in Metochia section into three major time slices that are discussed in chronological order: a cooling trend from 9,7 to 7,6 Ma, a warmer period from 7,6 to 7,2 Ma and then a cooling trend which finishes at the Messinian

    Genomic Selective Constraints in Murid Noncoding DNA

    Get PDF
    Recent work has suggested that there are many more selectively constrained, functional noncoding than coding sites in mammalian genomes. However, little is known about how selective constraint varies amongst different classes of noncoding DNA. We estimated the magnitude of selective constraint on a large dataset of mouse-rat gene orthologs and their surrounding noncoding DNA. Our analysis indicates that there are more than three times as many selectively constrained, nonrepetitive sites within noncoding DNA as in coding DNA in murids. The majority of these constrained noncoding sites appear to be located within intergenic regions, at distances greater than 5 kilobases from known genes. Our study also shows that in murids, intron length and mean intronic selective constraint are negatively correlated with intron ordinal number. Our results therefore suggest that functional intronic sites tend to accumulate toward the 5' end of murid genes. Our analysis also reveals that mean number of selectively constrained noncoding sites varies substantially with the function of the adjacent gene. We find that, among others, developmental and neuronal genes are associated with the greatest numbers of putatively functional noncoding sites compared with genes involved in electron transport and a variety of metabolic processes. Combining our estimates of the total number of constrained coding and noncoding bases we calculate that over twice as many deleterious mutations have occurred in intergenic regions as in known genic sequence and that the total genomic deleterious point mutation rate is 0.91 per diploid genome, per generation. This estimated rate is over twice as large as a previous estimate in murids
    • ā€¦
    corecore