
The resolution of the genetics of gene expression
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Understanding the influence of genetics on the molecular mechanisms underpinning human phenotypic
diversity is fundamental to being able to predict health outcomes and treat disease. To interrogate the role
of genetics on cellular state and function, gene expression has been extensively used. Past and present
studies have highlighted important patterns of heritability, population differentiation and tissue-specificity
in gene expression. Current and future studies are taking advantage of systems biology-based approaches
and advances in sequencing technology: new methodology aims to translate regulatory networks to
enrich pathways responsible for disease etiology and 2nd generation sequencing now offers single-molecu-
lar resolution of the transcriptome providing unprecedented information on the structural and genetic
characteristics of gene expression. Such advances are leading to a future where rich cellular phenotypes
will facilitate understanding of the transmission of genetic effect from the gene to organism.

PAST AND CURRENT STUDIES OF GENETICS

OF GENE EXPRESSION

Gene expression is a fundamental cellular function. The pattern
and properties of gene expression in any organism or cell is
an indicator of the cellular state and can also influence the
function of other cells. For the last 20 years, technology has
allowed us to measure levels of gene expression for many
or all genes of an organism, and this has revolutionized our
ability to screen the effect of genetic and environmental
perturbations. The accuracy by which one can now measure
mRNA levels has allowed the use of such measurements in
the context of genetic variation within species.

Understanding the effects of genetic variation in basic cel-
lular processes such as gene expression is key to the dissection
of the genetic contributions to whole organism phenotypes.
The effects of genetic variants can be quite simple and
easily interpretable at the cellular level but may be hard to
dissect at the whole organism level owing to the large
number of direct and indirect interactions occurring between
the DNA variant and the phenotype (1).

In the recent years, the method of choice for the study of
complex phenotypes and diseases in humans is to perform
genome-wide association studies (GWAS) in large samples
of cases and controls and/or cohorts with disease-related
traits, such as lipid levels or body mass index, or other anthro-
pometric traits such as height (2). One of the key features of

GWAS is that one can detect common genetic variants that
statistically explain a fraction of the variance of the phenotype,
but quite frequently such signals of association are found in
the regions of the genome with no apparent function or the
correlation structure of variants in the genome (linkage dise-
quilibrium) does not allow firm conclusions about what the
functional effect is (i.e. which gene has its function modified
due to the genetic variant). The ability to interrogate and
study the genetics of phenotypes that are intermediate
between the DNA variant and the phenotype of interest can
provide substantial additional power in inferring the true bio-
logical effect, which is essential for the development of
medical interventions. Gene expression is one of these key
intermediate phenotypes and there have been a number of
studies that have shown its value in the disease context.

Studies on the genetics of gene expression were first per-
formed only in the last decade, which acted as proof of prin-
ciple. Some of the initial experiments were performed in
yeast, which showed extensive genetic variation for gene
expression (3). Two key papers that followed, which looked
at the genetics of gene expression in lymhoblastoid cell lines
(LCLs) from the CEPH samples from Utah, have both
shown that gene expression phenotypes are heritable in
family pedigrees and therefore there is genetic variation to
be mapped in outbred populations (4–6). A number of
papers have followed that attempted mapping of genetic var-
iants that affect expression levels of a limited number of
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genes primarily in cis but to some extent in trans (7,8). These
studies have been facilitated by the availability of the HapMap
data, which provided 1 million and, subsequently, more than 3
million of genotyped SNPs for each of the 270 individuals
from four global populations.

MULTIPLE-TISSUE STUDIES

Gene expression in higher eukaryotes is well recognized to be
cell-type specific; different gene repertoires are intrinsic to a
cell’s function and the developmental processes of cell differ-
entiation. Analyses in the brain, kidney and liver in mouse
strains have highlighted the complexity of genetic influences
across multiple tissues; genes were subjected to complex
trans-genetic influences, and only 2% of genes with genetic
differences were shared among all three tissues (9,10). In con-
trast, in hippocampus, lung, and liver tissues collected from
heterogeneous stock mice, it was reported that two-thirds of
cis-acting eQTLs and one-half of trans-acting eQTLs are
shared (11). In humans, comparison of adipose and blood
from two separate Icelandic cohorts identified sharing
between 50% of the cis-eQTLs (12). Low correlation was
reported between cortical tissue and LCLs between European-
descendent samples (13). Fewer than 50% of eQTLs were
shared in a comparison of autopsy-derived cortical tissue
with peripheral blood mononucleated cell samples from
living donors (14). Furthermore, recent efforts by our labora-
tory have also begun to decipher genetic variation in the
context of cell-type specificity (15). We investigated eQTLs
in primary fibroblasts, LCLs and primary T-cells detected
from 85 Swiss individuals and found that 69–80% of all dis-
covered regulatory variants were cell-type specific.
Cell-type-specific variants were identified to have lower
effect sizes and were broadly distributed around transcription
start sites, suggesting their role on tissue-specific enhancer
elements. These results suggest that cellular context will
play a fundamental role in our ability to attribute expression
variation to higher level phenotypes.

POPULATION DIFFERENTIATION OF GENE

EXPRESSION

Understanding the genetic basis of gene expression variability
is a fundamental component in building our understanding of
the etiology of complex traits within populations. A principal
consideration has been identifying the extent to which gene
expression is a heritable trait. Early studies on a limited
number of genes suggested reduced genetic variability in
gene expression among monozygotic twins compared with
siblings (16). Examination of 2726 and 2340 expressed
genes from 4 and 15 CEPH reference families, respectively,
identified that 29–31% had significant heritability (4,6). Her-
itability estimates in 30 CEPH and 30 Yoruban reference
families have demonstrated 10 and 13% of 47 294 assayed
probes having heritability greater than 0.2 with 958 genes
shared (17). Similar estimates in 333 Icelandic families ident-
ified that 26% of 23 720 transcripts could be identified as heri-
table at 5% FDR after adjusting for sex, age, cell count and
BMI (12). Heritability in 30 recombinant inbred rat strains

demonstrated in four tissues that .20% of transcripts had her-
itability greater than 0.2 and of those with cis-eQTLs an even
higher proportion (0.31–0.51) (18).

Given that gene expression is heritable, the question
remains to what degree are populations differentiated due to
regulatory variation. Analysis of 16 individuals of African
and European ancestry estimated that 17% of genes are differ-
entially expressed among populations (19). Comparison of
European- and Asian-derived populations in 4197 genes
observed that 1097 showed population differentiation (20).
Similar comparison across 120 European- and African-derived
populations observed a mean value of 0.2 and a median of
0.12 for the proportion of gene expression variation attribu-
table to population differences (21). Detection of eQTLs
from approximately 2.2 million SNPs in four worldwide
populations for 270 individuals as part of the phase II
HapMap for 13 643 genes reported cross-population replica-
tion of cis-eQTLs as 37% and that between 17 and 29% of
genes have significant gene expression differences between
any two populations (17,22).

Such observations of heritability and population differen-
tiation highlight the dynamics of regulatory evolution and
the importance of genetics in human phenotypic variation.

HIGH-DIMENSIONALITY OF GENE EXPRESSION

DATA: ASSESSING EFFECTS BY FACTOR AND

PCA ANALYSIS

The effects of non-genetic variation such as environment,
population stratification and cellular stage invariably dampen
the ability to detect true genetic associations with gene
expression. The scope of these effects can be biological such
as perturbation of multiple genes within a regulatory cascade
or, technical, through false association with latent experimen-
tal factors. However, in a similar vein, true genetic effects can
also propagate through multiple genes and thereby exhibit
similar patterns. Discriminating non-genetic factors from
genetic factors as topological features of gene expression has
characteristically involved assessing the higher dimensionality
of gene expression data sets with respect to hidden or observed
covariates of interest using statistical techniques such as factor
analysis and regression. Factor analysis on the Phase II
HapMap eQTL study by Stranger et al. (23), correcting for a
maximum of 40 unobserved latent variables, tripled the
number of statistically significant associations detected. Surro-
gate variable analysis, which removes through regression
orthogonal vectors which are considered to have significantly
more variation than expected by chance, has been demon-
strated to find �20% more cis-linkages compared with those
originally detected in Brem et al. (3,24). Principal component
analysis has been used to correct genotype and phenotype data
in samples with mixed ancestry (25). Supervised principal
component analysis, which removes irrelevant genes in
advance of principal component analysis by using an a
priori defined gene set, has been used in mice to characterize
sexual dimorphism of aortic lesions (26). Further approaches
have explicitly corrected against what have been identified
as trans-eQTL hotspots, bands of statistically significant trans-
associations and technical confounding factors (27). However,
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the extent to which trans-eQTL hotspots are non-genetic is
still undetermined, as analysis of trans-eQTL hotspots in radi-
ation hybrid cell lines demonstrated GO enrichment for terms
such as transcription (28). Our own work has seen a significant
excess of transcription factors associated with trans-eQTL
hotspots in humans, suggesting that factor analysis is best con-
sidered with respect to biologically relevant posteriors (S.B.M.
and E.T.D., unpublished data).

NETWORK INFERENCE AND SYSTEM GENETICS

USING GENE EXPRESSION

Gene regulatory networks are well sought for their predictive
ability to determine gene–gene interaction outcomes in a tran-
scriptional network. The utility of gene expression data to
uncover the topology of GRNs has been well studied with
many different statistical models (reviewed in 29). The advan-
tage of such models from a genome-wide association stand-
point is that they immediately reduce the impact of multiple
testing corrections and further support the detection of eQTL
effects through joint modeling. Such an approach has been
demonstrated in a recent analysis of human adipose tissue
where genetic variants were associated with a macrophage-
enriched metabolic network, and within this class of eQTLs,
statistical significance for association with obesity was
thereby enriched in genetic associations to obesity (12).
Another analysis aimed to reproduce likely networks from
available functional genomics data in yeast observed that sub-
networks are significantly enriched for genes sharing common
eQTLs (30). Furthermore, several network modeling algor-
ithms have also been proposed and developed for GWAS in
lieu of actual network or extensive functional genomics data
being available (31–33). However, GRNs are context depen-
dent, and harmonization between network priors and gene
expression context will likely continue to enrich the corre-
lation between expression and trait.

Network-based approaches expand on power to associate
single variants with expression phenotypes; however,
increasing relevance of many variants to one or many genes
associations is highlighted by low-effect sizes seen in many
GWAS (34). Most GWAS assume additive model of effects.
Our laboratory has explored an epistatic model where
regulatory variation modifies the effect of coding risk alleles
predicting from 210 unrelated individuals that 18% of non-
synonymous SNPs are differentially expressed among individ-
uals (35). These results highlight that not only the spectrum of
genes in a trait-related network but the intrinsic variant–
variant interactions of that network will influence phenotype.

ENVIRONMENTAL EFFECTS ON GENE

EXPRESSION

Although genetics is always an important component of vari-
ation in gene expression, we should not forget that gene
expression is also highly sensitive to the environment in
which the cell is found. Environmental effects in this
context are several variables of the individual for which we
measure gene expression (diet, smoking, age) as well as
effects that are caused by the treatment of cells, which affect

the levels and patterns of gene expression. In a recent study
(36), it was shown that environmental effects and lifestyle
can have very strong effects on gene expression patterns that
may be stronger than the genetic signal. In a different study,
it was shown that intrinsic properties of LCLs as well as prop-
erties that are imposed to them by the experiment can also
influence gene expression levels (37). The ability to measure
a priori such effects or to infer them using statistical method-
ologies (24) is bound to have a large effect in our ability to
evaluate the effect of genetic factors in cellular processes
such as gene expression.

HIGH-RESOLUTION GENETICS (ARRAYS VERSUS

SEQUENCING)

Recent advances in sequencing have enabled a more detailed
resolution of the transcriptome landscape. Recent uses of
RNA sequencing (RNA-seq) have improved by-transcript
quantification, assessment of alternative splicing and detection
of novel gene structure. Initial sequencing of adult mouse
brain, liver and skeletal muscle reported 3500 different
genes with alternative splice sites and high levels of technical
reproducibility (r2 ¼ 0.96) (38). Furthermore, comparison of
splicing detected in this experiment with splicing arrays has
demonstrated that there are non-biological splicing array
biases that do not exist in the sequencing data (39). Similarly,
analysis of RNA-seq from six tissues highlighted that �95%
of multiexon genes are alternatively spliced and technical
comparison of 1548 cassette-type alternative exon-splicing
events in microarrays reported correlation r of 0.80 (40).
Furthermore, a general assessment of reproducibility of
sequencing quantification against microarrays in two tissues
showed Spearman correlations of 0.73 and 0.75, respectively
(41). Likewise, when these authors compared genes identified
as differentially expressed, they found 81% were shared
between platforms and, through followup with qPCR,
suggested that many of those genes called differentially
expressed in the sequencing data were likely true positives.
Further resolution of RNA-seq suggests that it is better at
discriminating low-level expression from background noise
such as that found in microarrays; one study reported that
RNA-seq captured 25% more known transcripts (42). We
have investigated the ability to impute results obtained on
arrays into RNA-seq experiments both to enable better tissue-
specific array designs and to facilitate hybrid sequencing/array
experimental designs. Preliminary results suggest that mean
Spearman correlation between exons across 48 individuals is
.0.5 (S.B.M. and E.T.D., unpublished data).

Although increasingly affordable, it still remains technically
challenging and relatively costly to perform RNA-seq on large
cohorts. The advantages, however, are that a broader spectrum
of quantitative phenotypes compared with array-based studies
are now accessible.

SECOND GENERATION SEQUENCING IN DNA

AND RNA: PERSPECTIVES

Next generation sequencing in DNA and RNA has ushered in
a new era of genetic analysis with respect to regulatory com-
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plexity. The 1000 Genomes Project (www.1000genomes.org)
promises to uncover a deeper spectrum of rare variants and
lesser studied variants such as indels and CNVs which when
coupled with expression technology will increase our under-
standing of rare variant effects and allow for richer quantifi-
cation of allele-specific expression (Fig. 1). The increasing
affordability of bisulfite sequencing (43,44), strand-specific
sequencing (45), Chip-Seq (46), GLO-seq (47), MeDIP-seq
(48) and future sequencing methodologies when surveyed in
families and populations will increase our understanding
of genetic influence on the regulatory genome. It is these
intermediate cellular endophenotypes that offer the clearest
translation to the understanding of the molecular basis of
human phenotypic variation.

IMPLICATIONS FOR DISEASE AND CONCLUSION

Ultimately, we would like to understand the biochemical
and molecular basis of disease susceptibility and risk. The
current genetic studies provide the framework to pinpoint
the genomic location and statistical properties of the genetic
factors involved, but provide little insight into the specific

functions in the cell or the body that are predisposing an
individual. What one would like to know is what is the first
cellular effect that is different between an individual who
carries the predisposing allele and an individual who does
not, and what are the reasons and means by which the predis-
position is realized to a disease state. Gene expression is a
critical phenotype that reveals such biochemical properties
and allows us to dig into the cellular functions. Combining
sophisticated statistical methods with relevant sample
collections of tissues and cell types from well-phenotyped
individuals enables the integrated treatment of biological and
epidemiological information in an iterative way. This provides
us with the highest possible resolution and will reveal the real
causes for disease predisposition. Such collections are becom-
ing a reality now through new sample collections. Finally,
dissecting the genetics of cellular processes will not only revo-
lutionize medical sciences but also will provide very important
clues for basic biology and understanding of biological
systems since we will have in our hands a tremendous
number of natural ‘mutants’ that perturb the cellular processes
and we can measure their effect from the cell to the whole
organism (Fig. 2). It is probably not a stretch to say that
there are great opportunities for human cellular systems to
become the basis for the progress of systems biology.
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