1,388 research outputs found

    Localized mode interactions in 0-pi Josephson junctions

    Get PDF
    A long Josephson junction containing regions with a phase shift of pi is considered. By exploiting the defect modes due to the discontinuities present in the system, it is shown that Josephson junctions with phase-shift can be an ideal setting for studying localized mode interactions. A phase-shift configuration acting as a double-well potential is considered and shown to admit mode tunnelings between the wells. When the phase-shift configuration is periodic, it is shown that localized excitations forming bright and dark solitons can be created. Multi-mode approximations are derived confirming the numerical results.Comment: 4 pages, to appear in Phys. Rev.

    Kinetic pathways of the Nematic-Isotropic phase transition as studied by confocal microscopy on rod-like viruses

    Get PDF
    We investigate the kinetics of phase separation for a mixture of rodlike viruses (fd) and polymer (dextran), which effectively constitutes a system of attractive rods. This dispersion is quenched from a flow-induced fully nematic state into the region where the nematic and the isotropic phase coexist. We show experimental evidence that the kinetic pathway depends on the overall concentration. When the quench is made at high concentrations, the system is meta-stable and we observe typical nucleation-and-growth. For quenches at low concentration the system is unstable and the system undergoes a spinodal decomposition. At intermediate concentrations we see the transition between both demixing processes, where we locate the spinodal point.Comment: 11 pages, 6 figures, accepted in J. Phys.: Condens. Matter as symposium paper for the 6th Liquid Matter Conference in Utrech

    Incongruity, incongruity resolution, and mental states: The measure and modification of situational awareness and control

    Get PDF
    The research reported here describes the process of induction of various mental states. Our goals were to measure and to manipulate both the behavioral and the neurological correlates of particular mental states that have previously been demonstrated to be either beneficial or deleterious to in-flight performance situations. The experimental paradigm involved developing a context of which the participants were aware, followed by the introduction of an incongruity into that context. The empirical questions involved how the incongruity was resolved and the consequent effects on mental state. The dependent variables were measures of both the short-term ERP changes and the longer-term brain mapping indications of predominant mental states. The mission of NASA Flight Management Division and Human/Automation Integration Branch centers on the understanding and improvement of interaction between a complex system and a human operator. Specifically, the goal is improved efficiency through better operative procedures and control strategies. More efficient performance in demanding flight environments depends on improved situational awareness and replanning for fault management

    The interplay between genetics and epigenetics in colorectal cancer

    Get PDF

    Cavitation-induced force transition in confined viscous liquids under traction

    Full text link
    We perform traction experiments on simple liquids highly confined between parallel plates. At small separation rates, we observe a simple response corresponding to a convergent Poiseuille flow. Dramatic changes in the force response occur at high separation rates, with the appearance of a force plateau followed by an abrupt drop. By direct observation in the course of the experiment, we show that cavitation accounts for these features which are reminiscent of the utmost complex behavior of adhesive films under traction. Surprisingly enough, this is observed here in purely viscous fluids.Comment: Submitted to Physical Review Letters on May 31, 2002. Related informations on http://www.crpp.u-bordeaux.fr/tack.htm

    Synchronization of organ pipes: experimental observations and modeling

    Full text link
    We report measurements on the synchronization properties of organ pipes. First, we investigate influence of an external acoustical signal from a loudspeaker on the sound of an organ pipe. Second, the mutual influence of two pipes with different pitch is analyzed. In analogy to the externally driven, or mutually coupled self-sustained oscillators, one observes a frequency locking, which can be explained by synchronization theory. Further, we measure the dependence of the frequency of the signals emitted by two mutually detuned pipes with varying distance between the pipes. The spectrum shows a broad ``hump'' structure, not found for coupled oscillators. This indicates a complex coupling of the two organ pipes leading to nonlinear beat phenomena.Comment: 24 pages, 10 Figures, fully revised, 4 big figures separate in jpeg format. accepted for Journal of the Acoustical Society of Americ

    Correcting non-independent and non-identically distributed errors with surface codes

    Get PDF
    A common approach to studying the performance of quantum error correcting codes is to assume independent and identically distributed single-qubit errors. However, the available experimental data shows that realistic errors in modern multi-qubit devices are typically neither independent nor identical across qubits. In this work, we develop and investigate the properties of topological surface codes adapted to a known noise structure by Clifford conjugations. We show that the surface code locally tailored to non-uniform single-qubit noise in conjunction with a scalable matching decoder yields an increase in error thresholds and exponential suppression of sub-threshold failure rates when compared to the standard surface code. Furthermore, we study the behaviour of the tailored surface code under local two-qubit noise and show the role that code degeneracy plays in correcting such noise. The proposed methods do not require additional overhead in terms of the number of qubits or gates and use a standard matching decoder, hence come at no extra cost compared to the standard surface-code error correction

    Correcting non-independent and non-identically distributed errors with surface codes

    Get PDF
    A common approach to studying the performance of quantum error correcting codes is to assume independent and identically distributed single-qubit errors. However, the available experimental data shows that realistic errors in modern multi-qubit devices are typically neither independent nor identical across qubits. In this work, we develop and investigate the properties of topological surface codes adapted to a known noise structure by Clifford conjugations. We show that the surface code locally tailored to non-uniform single-qubit noise in conjunction with a scalable matching decoder yields an increase in error thresholds and exponential suppression of sub-threshold failure rates when compared to the standard surface code. Furthermore, we study the behaviour of the tailored surface code under local two-qubit noise and show the role that code degeneracy plays in correcting such noise. The proposed methods do not require additional overhead in terms of the number of qubits or gates and use a standard matching decoder, hence come at no extra cost compared to the standard surface-code error correction
    • …
    corecore