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Families of stable stationary solutions of the two-dimensional incompressible homo-
geneous Euler and ideal reduced magnetohydrodynamic equations are shown to be
attracting for the corresponding viscous perturbations of these systems, i.e. for the
Navier–Stokes and the reduced viscous MHD equations with magnetic diffusion. Each
solution curve of the dissipative system starting in a cone around the family of sta-
tionary solutions of the unperturbed conservative system defines a shadowing curve
which attracts the dissipative solution in an exponential manner. As a consequence,
the specific exponential decay rates are also determined. The techniques to analyse
these two equations can be applied to other dissipative perturbations of Hamiltonian
systems. The method in its general setting is also presented.
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1. Introduction

There are several physical systems which can be modelled as a Hamiltonian system
to which dissipation has been added. Examples of such systems considered in this
paper are the reduced magnetohydrodynamics approximation of a two-dimensional
charged homogeneous incompressible fluid with viscosity and resistivity and the two-
dimensional Navier–Stokes equations. If the dissipation is ignored, then, in both
examples, the purely Hamiltonian system possesses Casimir functionals. By using
the energy-Casimir functional which is a linear combination of the Hamiltonian and
the relevant Casimir functionals, we can give a variational description of stationary
solutions of the Hamiltonian system. Usually, these stationary solutions are found in
families. If the stationary solution is a minimum of the energy-Casimir functional,
then it is conditionally Lyapunov stable (Holm et al. 1985).

In this paper we will build on the ideas of Holm et al. (1985) and use the energy-
Casimir functional to show that certain families of such stable Hamiltonian stationary
states are attractors for the dissipative system. More precisely, for every solution of
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the dissipative system attracted to these families, we define a shadowing curve on
the family of stationary states. The rate of attraction of the solution curve to its
shadowing curve is found by analysing the time derivative of a functional which
measures a weighted distance between states of the physical system and the family
of Hamiltonian stationary states. To be specific, this functional is the quotient of the
specific energy-Casimir functional used in the stability analysis of the unperturbed
Hamiltonian system and another positive definite conserved functional. It behaves
like a scaled Lyapunov function and thus allows us to derive a sharp estimate for the
deviation of the solution curve of the dissipative system from its attracting shadowing
curve on the manifold of stationary solutions of the unperturbed Hamiltonian system.

This method extends the work in Derks et al. (1995) which presents a general
theory for the approximation of the solutions of a finite dimensional dissipative sys-
tem by shadowing curves of relative equilibria of the associated Hamiltonian system
with symmetry. In general, there do not exist constants of the motion which are
simultaneously norms for the states of the system. Thus, the general theory analyses
the time derivative of only the energy-momentum functional, which is the analogue
of the energy-Casimir functional. However, as is the case in our examples, if there
are constants of the motion which are also positive definite, then the analysis of a
specific quotient gives sharper estimates for the decay rate to the shadowing curve.

In this paper (and in Derks et al. (1995)) it is essential that we look at stationary
solutions (relative equilibria) which are Lyapunov stable. As can be seen from Bloch
et al. (1994, 1996), if a relative equilibrium is not a constrained minimum then
a dissipation can induce instability. In Bloch et al. (1994, 1996), the analysis is
restricted to Hamiltonian systems with a dissipation that respects the invariance of
the constants of motion of the Hamiltonian system. The dissipations we look at do
not have that property. Moreover, the technique in Bloch et al. (1994, 1996) implicitly
requires that the stationary solution for the Hamiltonian system remains stationary
even after the dissipation is added. This is precisely what does not happen in the
case of the Navier–Stokes and reduced magnetohydrodynamics (RMHD) equations,
so the results of this paper can be considered in some sense complementary to those
in Bloch et al. (1994, 1996).

The main system in this paper is the RMHD approximation of a two-dimensional
charged homogeneous incompressible fluid with viscosity and resistivity. Let D be a
compact simply connected domain in the x–y-plane with a smooth boundary ∂D. We
shall study the motion of a two-dimensional charged homogeneous incompressible
fluid in D in the RMHD approximation (Morrison & Hazeltine 1984; Morrison &
Eliezer 1986). The Eulerian velocity field is denoted by v and the magnetic field by
B = (∂A/∂y,−∂A/∂x), where A is the magnetic potential; both are vectors lying
in the plane determined by D.

Since div v = 0 and D is simply connected, there is a stream function ψ for the
velocity field v, i.e. v = (∂ψ/∂y,−∂ψ/∂x). This function ψ, uniquely determined
only up to a constant, is necessarily constant on ∂D; thus one can fix this constant
to be zero and then ψ is uniquely determined by v.

The vorticity ω and the electric current density J are defined to equal the third
(and only non-zero) components of curlv and of curlB, respectively. Thus, ω = −∆ψ
and J = −∆A, where ∆ = div ◦ grad is the Laplacian on the plane. The RMHD
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equations with viscosity and resistivity are

ω̇ = −v · ∇ω +B · ∇J + ν∆ω = {ψ, ω}+ {J,A}+ ν∆ω,
Ȧ = −v · ∇A+ η∆A = {ψ,A}+ η∆A.

}
(1.1)

In these equations { , } is the usual Poisson bracket in the x–y-plane, ν is the fluid
viscosity and η is the magnetic viscosity (also called resistivity or magnetic diffusiv-
ity).

We consider two types of boundary conditions. In the first set we shall impose the
standard no-slip boundary condition on the velocity field v, that is, v = 0 on ∂D
and the magnetic potential zero on the boundary, i.e.

BC1

{
v = 0, on ∂D,
A = 0, on ∂D.

Note that the no-slip boundary condition is equivalent to ψ = 0 and ∂ψ/∂n = 0 on
the boundary.

The second set does not impose the no-slip boundary condition, but replaces it
with a condition on the vorticity: ω × n = 0 and the standard non-penetration
boundary condition v ·n = 0 (Temam 1988, §3.2.2). In our planar case this becomes

BC2

{
ψ = 0, and ω = 0, on ∂D,
A = 0, on ∂D.

The total energy of the system is

H = 1
2

∫
D

(|v|2 + |B|2) dx = 1
2

∫
D

(ωψ + JA) dx. (1.2)

If the initial conditions are sufficiently smooth, then there exist unique strong
solutions of the dissipative RMHD equations (see, for example, Sermange & Temam
(1983), and references therein). For ideal RMHD (i.e. without dissipation), short-
time existence for classical solutions of planar MHD is proven in Kozono (1989).
Given the existence and uniqueness of strong solutions, we shall use the term stable
to denote Lyapunov stability of solutions or families of solutions, as opposed to the
considerably weaker property of continuous dependence on initial conditions.

In this paper, we shall introduce a family of stable ground states for the RMHD
equations without dissipation and define shadowing curves on this family for solu-
tions of the RMHD equations with dissipation with appropriate initial conditions.
By analysing a scaled Lyapunov function, we shall show how fast solutions of the
dissipative equation are attracted to their shadowing curves. In Ghidaglia (1986)
and Sermange & Temam (1983) it is shown that the flow of the RMHD equations
is asymptotically described by a finite set of parameters that depend on the initial
conditions. There remains the question of the relationship between the initial condi-
tion and the set of these parameters. In Hasegawa (1985), the asymptotic behaviour
is related to self-organization in the RMHD equations. Self-organization is shown
for Alfvén waves: the magnetic field B is parallel to the velocity v and the ratio of
their lengths is prescribed. The question of what happens for more general initial
conditions is explicitly raised. In this work we give quantitative precise answers to
these questions in terms of the shadowing curves introduced above.

If no magnetic terms are present, the RMHD equations become the two-
dimensional Navier–Stokes equations. The stable ground states are two-dimensional
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versions of the Arnold–Beltrami–Childress flows (ABC) (cf. Dombre et al. 1986). In
the case of the boundary conditions BC2, the definition and the analysis of the shad-
owing curves is straightforward. In order to illustrate our techniques more clearly,
we first study the two-dimensional Navier–Stokes equations. In this way we recover
and slightly improve some results known in literature. Our results on the attracting
properties of the ABC flows are reminiscent of those obtained by Marchioro (1986)
but the proof is closer in spirit to that in Constantin et al. (1988). The spectral-gap
condition automatically holds and the cone condition guaranteeing the existence of
the shadowing curve is similar to the one found in inertial manifold theorems. How-
ever, the papers above also permit forcing terms in both the Euler and Navier–Stokes
equations and our techniques do not immediately generalize to this setting since they
are heavily based on the Hamiltonian dynamics of the unperturbed system. Never-
theless, combining the procedure of this paper with the well-developed machinery
of inertial manifolds will allow the treatment of the case with forcing too. Foias et
al. (1989) is particularly relevant to this approach and we hope to address this in a
future publication in which we will also tie the ideas of this paper with results on
inertial manifolds.

It seems natural to ask what happens to our methods if we analyse the equations
in a three-dimensional setting. There are several obstacles in the three-dimensional
case that do not allow us to extend the methods of this paper. Firstly, there is
the problem of the existence and uniqueness of long-time strong solutions. Only
well posedness is known, and in particular, only short-time existence of solutions
has been proved. Secondly, in three dimensions, the only known Casimir functional
is the helicity (i.e.

∫
D v · ω dx), if the domain is the entire space or if some very

special boundary conditions hold. Thirdly, even if one would consider domains and
boundary conditions for which the helicity is a Casimir, the relevant constrained
critical points of the energy functional are the Beltrami flows which are formally
unstable because they are not constrained maxima or minima on the level sets of
the Casimir functional. Because of these problems our analysis cannot be extended
to the three-dimensional situation.

A special class of these Beltrami flows are the ABC flows. Arnold (1972) showed
that in the Euler equations some three-dimensional steady flows for which the vortic-
ity and the velocity are collinear can exhibit exponential stretching of particle paths,
which induces exponential instability. He conjectured that the ABC flows also have
exponential stretching. For some subclasses of ABC flows this was proved in Dombre
et al. (1986) and Friedlander et al. (1993). Furthermore, in Galloway & Frisch (1987)
it is numerically suggested that the ABC flows are exponentially unstable in the
three-dimensional Navier–Stokes equations if the Reynolds number (i.e. ν−1) passes
a certain threshold. On the other hand, inertial manifold theory shows that there is
an attractor which consists of special Beltrami flows (see Foias & Saut 1984; Foias
et al. 1989).

2. The main ideas in the analysis

Some of the expositions and proofs that follow are technically quite intricate,
although the ideas behind them are relatively simple. In order to facilitate the read-
ing, we sketch the main ideas underlying the definition of the shadowing curves as
well as the main steps of the proof of their existence and the estimates to the solution
of the dissipative system. This rough outline is valid both in the case of the two-
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dimensional Navier–Stokes equation as well as in the case of the RMHD equations,
where some technical issues appear which will complicate and slightly obscure the
analysis.

(1) First we look at the conservative system. In the case of the Navier–Stokes equa-
tions, the conservative system is formed by the Euler equations. In the magnetohy-
drodynamical case, the conservative system is given by the ideal RMHD equations.
To define the ground states, we use the Hamiltonian and some Casimirs. In the case
of the Euler equations the relevant Casimir is the enstrophy W = 1

2

∫
D ω

2 dx. For
the ideal RMHD equations we use the following two Casimirs:

I1 =
∫
D
ωA dx and I2 = 1

2

∫
D
ω2 dx.

By looking at constrained minima of the Hamiltonian on level sets of the Casimir(s),
we get the ground-state solutions. We define a Lyapunov functional L(u) based on
the Euler–Lagrange equation of the critical-point problem. This Lyapunov functional
is a linear combination of the Hamiltonian and the Casimir(s). For the conservative
systems, the Lyapunov functional gives (constrained) stability of the ground states.

(2) The next step is to look at the dissipative system. The ground states form
an invariant manifold for the dissipative system. To analyse if and how they attract
other solutions, we first define a projection of a solution onto the invariant manifold
of ground states. This projection will form a shadowing curve if the solution is
attracted to the ground states manifold. We denote this projected curve by ū(t).
The Lyapunov functional L(u(t)) is a measure of the distance between the solution
u(t) of the dissipative system and the projected curve ū(t).

If C(u) is a positive definite conserved quantity, which can be used as a (semi)-
norm for u, then the scaled Lyapunov functional L̂(u(t)) = L(u(t))/C(u(t)) is a
normalized measure for the distance between the solution u(t) and the projected
curve ū(t). For the Navier–Stokes equations we use C(u) = H(u) and for the RMHD
equations we use C(u) = I2(u).

(3) The final and most elaborate step is to derive an estimate for the time behaviour
of the scaled Lyapunov functional L̂(u(t)). For both the Navier–Stokes equations and
the RMHD equations we will show that for appropriate initial conditions we have

d
dt
L̂(u(t)) 6 −2νdL̂(u(t)) + remainder.

Here d > 0 is some constant that ‘measures’ the dissipative behaviour of the
scaled Lyapunov functional. The remainder is of order L̂(u(t))2 or can be written as
f(t)L̂(u(t)), with f(t) some integrable function. This estimate on the time derivative
implies that L̂(u(t)) decays like e−2νdt.

In the case of the Navier–Stokes equations it is straightforward to carry out the
steps above. This analysis can be found in §3.

In the case of the RMHD equations, there is a restriction on the values of the
Casimirs I1 and I2 in order to get constrained minima. This is shown in §4 which
deals with the analysis of the ideal RMHD equations. In §5 we show that the set of
stable ground states form an invariant manifold for the dissipative RMHD equations.
Before we can start the analysis of the time behaviour of the scaled Lyapunov func-
tional, we have to make sure that our solutions satisfy the restriction on the value
of the Casimirs I1 and I2 for all time. So in §6 we make some a priori estimates to
verify that for appropriate initial conditions the restrictions are satisfied for all time.
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For these initial conditions, we analyse the time behaviour of the scaled Lyapunov
functional L̂(u(t)) in §7. A nice (coincidental) property of the a priori estimates in
§6 is that they also provide a first estimate for the decay of L̂(u(t)).

3. Attracting ABC-flows in two-dimensional Navier–Stokes

By ignoring the influence of the magnetic field in the RMHD equations, we recover
the Navier–Stokes equations in two dimensions. The goal of this section is to illustrate
our method for this simpler system which was already studied in Foias & Saut (1984)
and in van Groesen (1988) by different techniques. We shall use the same conserved
functionals but exploit the fact that a judicious combination thereof is a Lyapunov
functional for the ideal homogeneous two-dimensional Euler equations. This then
enables us to slightly improve some estimates in Foias & Saut (1984) and van Groesen
(1988).

Specifically, in this section we consider

ω̇ = −v · ∇ω + ν∆ω = {ψ, ω}+ ν∆ω, in D,
ψ = 0 and ω = 0, on ∂D,

}
(3.1)

where D is any compact simply connected domain in the x–y-plane with smooth
boundary ∂D.

(a ) Ground states in the Euler equations
If we ignore the viscosity, i.e. ν = 0, then the Navier–Stokes equations become the

Euler equations, which are a Hamiltonian system relative to the total energy

H(ω) = 1
2

∫
D
|v|2 dx = 1

2

∫
D
ωψ dx.

A family of stationary solutions of Euler’s equation is given by

−∆ωλ = λωλ, implying ωλ = λψλ,

where λ is a positive eigenvalue of (−∆) with zero boundary conditions. These solu-
tions are a two-dimensional version of the ABC flows (cf. Dombre et al. 1986). In
particular, if D is a disc, then these solutions are necessarily axisymmetric. In liter-
ature, sometimes the ABC flows are called Stokes flows, since they are solutions of
the Stokes operator.

We define the enstrophy

W (ω) = 1
2

∫
D
ω2 dx.

It is easily verified that the critical points of W − λH are the stationary solutions
considered above. Moreover, let 0 < λ0 < λ1 6 · · · be the eigenvalues of (−∆) with
zero boundary conditions; λ0 is strictly positive and simple (Aubin 1982, ch. 4). Let
E0 be the eigenspace with the eigenvalue λ0, let Π0 be the L2-orthogonal projection
onto E0, and let Π⊥0 be the projection on the orthogonal complement E⊥0 of E0. Then
the ABC flows ωλ0 are global constrained minima of the enstrophy W on level sets
of the Hamiltonian. To see this, fix ωλ0 = −∆ψλ0 = λ0ψλ0 , define hλ0 := H(ωλ0)
and let ξ = −∆ϕ, ξ|∂D = 0, ϕ|∂D = 0, be arbitrary but such that H(ωλ0 + ξ) = hλ0 ,
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which is equivalent to ∫
D
ψλ0ξ dx+ 1

2

∫
D
ξϕdx = 0.

Multiplying this identity by λ0 yields therefore∫
D
ωλ0ξ dx = −1

2
λ0

∫
D
ξϕdx,

so by denoting the L2-norm by ‖. ‖ we get

W (ωλ0 + ξ)−W (ωλ0) = 1
2

∫
D
ξ(ξ − λ0ϕ) dx > λ1 − λ0

2λ1
‖Π⊥0 ξ‖2, (3.2)

the last inequality being obtained by a straightforward eigenfunction expansion. Thus
W (ωλ0 + ξ) >W (ωλ0) for any ξ in the hλ0-level set of H, i.e.

W (ωλ0) = min
ω
{W (ω) | H(ω) = hλ0}.

The inequality W (ωλ0 + ξ) >W (ωλ0) becomes an equality only if ξ ∈ E0. Since λ0 is
simple, the conditions ξ ∈ E0 and H(ωλ0 + ξ) = hλ0 imply that ξ = 0 or ξ = −2ωλ0 .
Thus the constrained minimum is unique up to a sign.

Remark 1. A more general result in the non-smooth case was obtained by Bur-
ton & McLeod (1991) in any dimension. Consider the weak closure of the set Oω0

of all the not necessarily invertible measure-preserving rearrangements of a given
‘vorticity function’ ω0. (It is known that this equals the norm closed convex hull of
Oω0 .) Then it is shown that the infimum of the ‘energy function’ 1

2

∫
D ω(−∆)−1ω dx

over this weak closure is always attained, is unique and is one-signed almost every-
where. In addition, the minimum ωmin is a decreasing function of its ‘stream function’
(−∆)−1ωmin. Moreover, if ω0 is one-signed almost everywhere, then the minimum
ωmin is a rearrangement of ω0. In Burton (1987) it is shown that the maximum ωmax
of the ‘energy function’ over just Oω0 is always attained but that it is not unique in
general. (Of course, it coincides with the maximum over the weak closure of Oω0 .)
Any maximum ωmax is an increasing function of its ‘stream function’ (−∆)−1ωmax.
If the domain is a ball and ω0 is one-signed almost everywhere, then the maximum
ωmax is unique (Burton & McLeod 1991).

The lower bound (3.2) is part of the string of inequalities

1
2‖Π⊥0 ξ‖2 > (W − λ0H)(ωλ0 + ξ) = 1

2

∫
D
ξ(ξ − λ0ϕ) dx > λ1 − λ0

2λ1
‖Π⊥0 ξ‖2, (3.3)

which will be used several times throughout this section. Together with conservation
of H and W and the long-time existence theorem for classical solutions for the
two-dimensional homogeneous incompressible Euler equations (see Kato 1967), it
implies that the solutions ωλ0 are Lyapunov stable in the L2 semi-norm on the finite
perturbations ξ given by [(W − λ0H)(ωλ0 + ξ)]1/2. The direction of degeneracy of
this semi-norm is E0, i.e. precisely the family of ABC flows. Thus the ABC flows
are Lyapunov stable as a family; the direction of the first eigenfunction cannot be
controlled by the semi-norm [(W − λ0H)(ωλ0 + ξ)]1/2.

(b ) The Navier–Stokes equations
Now we return to the full Navier–Stokes equations. Let Ek denote the λk-eigenspace

of (−∆) with zero boundary conditions. It is straightforward to verify that for any
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k ∈ N and any ωλk ∈ Ek,
ω̂(t) = e−νλktωλk , t > 0

determines a solution of the Navier–Stokes equations. By global existence and unique-
ness of the classical solutions for the Navier–Stokes equations (see Temam 1988,
§2.2), these are all the solutions of the Navier–Stokes equations which at some t0
(and hence for all t) lie in Ek. Thus if ω̂(0) = ωλk , some ABC flow, at any other
subsequent time according to the dynamics of the Navier–Stokes equations, ω̂(t) is
proportional to ωλk , the proportionality constant e−νλkt depending on time. Thus
the ABC flows form invariant families under the dynamics of the Navier–Stokes
equations.

Note also that by uniqueness of classical solutions, if ω0 6= 0, then the solution
ω(t) of the Navier–Stokes equations with initial condition ω(0) = ω0 also satisfies
ω(t) 6= 0 for all t > 0 (as a map from [0,∞) to the space of functions on the domain
D, not as a function of (t,x)). In particular, H(ω(t)) 6= 0 and W (ω(t)) 6= 0.

We shall show below that the ABC flows in E0 form an attractor for the solutions of
the Navier–Stokes equations with a cone-like-shaped basin of attraction. The domain
of attraction cannot be an unscaled ball, because, as we have seen above, the spaces
Ek are invariant under the dynamics of the Navier–Stokes equations. To show that
E0 is an attractor, we analyse the time behaviour of the scaled Lyapunov function

L̂(ω) =
W (ω)− λ0H(ω)

H(ω)
> (λ1 − λ0)‖Π⊥0 ω‖2

2λ1H(ω)
> 0. (3.4)

The lower bound is obtained from a standard Poincaré inequality as in (3.3).

Theorem 3.1. Assume that ω0 6= 0 does not belong to E0 and is such that
W (ω0) < λ1H(ω0) (i.e. L̂(ω0) < λ1 − λ0). If ω(t) is a solution of the Navier–Stokes
equations with initial condition ω0, then

L̂(ω(t)) 6 e−2ν(λ1−λ0)tL̂(ω0)

(
1− L̂(ω0)

λ1 − λ0
(1− e−2ν(λ1−λ0)t)

)−1

, (3.5)

implying that

L̂(ω(t)) 6 e−2ν(λ1−λ0)t L̂(ω0)(λ1 − λ0)
λ1 − λ0 − L̂(ω0)

. (3.6)

Proof. Using the boundary condition ω|∂D = 0, the time derivatives of the Hamil-
tonian and the enstrophy functional are given by

d
dt
H(ω(t)) = −ν

∫
D
ω2 dx− ν

∫
∂D

ω
∂ψ

∂n
= −2νW (ω(t))

d
dt
W (ω(t)) = −ν

∫
D
ω(−∆ω) dx

= −ν
∫
D
|∇ω|2 dx− ν

∫
∂D

ω
∂ω

∂n
= −ν

∫
D
|∇ω|2 dx.


(3.7)

From this, we get

d
dt
L̂(ω(t)) =

ẆH −WḢ

H2 = − ν

H2

[
H

∫
D
|∇ω|2 dx− 2W 2

]
Proc. R. Soc. Lond. A (1998)



Attracting curves on families of stationary solutions 1415

=
2ν(W − λ0H)2

H2 − ν

H

[ ∫
D

(−∆ω)ω dx− 2λ0W − 2λ0(W − λ0H)
]

= 2νL̂2 + 2νλ0 L̂− ν

H

∫
D
ω(−∆− λ0)ω dx.

Poincaré inequalities show
∫
D ω(−∆−λ0)ω dx > λ1

∫
D ω(ω−λ0ψ) = 2λ1 (W−λ0H).

Substitution in the expression for the time derivative of L̂ gives
d
dt
L̂(ω(t)) 6 2νL̂2 + 2νλ0L̂− 2λ1ν

H
(W − λ0H) = 2νL̂2 − 2ν(λ1 − λ0)L̂.

Since ω0 is not an element of E0, it follows that L̂(ω(t))e2ν(λ1−λ0)t > 0, so we can
rewrite the above inequality as

d
dt

[
1

e2ν(λ1−λ0)tL̂(ω(t))

]
> −2νe−2ν(λ1−λ0)t.

A straightforward integration gives that

1
e2ν(λ1−λ0)tL̂(ω(t))

> 1
L̂(ω0)

(
1− L̂(ω0)

λ1 − λ0
(1− e−2ν(λ1−λ0)t)

)
.

The expression on the right-hand side is positive for all t > 0, if L̂(ω0) 6 λ1 − λ0.
Hence for ω0 such that L̂(ω0) 6 λ1 − λ0 the inequality above can be rewritten as (3.5).

(c ) Consequences
We shall draw now several consequences of theorem 3.1. The consequences (1)-(6)

give several interpretations about how solutions with initial conditions ω0 such that
W (ω0) < λ1H(ω0) are attracted to the family of ABC flows and how theorem 3.1
compares to results known in literature. In consequence (7) we show that theorem 3.1
implies that the invariant manifold E1 is unstable.

(1) The statement can be interpreted in terms of shadowing curves on the manifold
of ABC flows. We define a shadowing curve ω̄λ0(t) on the manifold of ABC flows in
the following way. Let χ0 to be a λ0-eigenfunction of (−∆) whose L2-norm equals 1.
Define

ω̄λ0(t) =
√

2λ0 sgn
(∫
D
ω(t)χ0 dx

)√
H(ω(t))χ0.

This definition implies H(ω̄λ0(t)) = H(ω(t)) for all t and ω̄λ0(t) is a minimiser of W
on the level set {ω | H(ω) = H(ω(t))}. From 1

2‖ω̄λ0‖2 = λ0H(ω̄λ0) and formulae (3.4)
and (3.6) we get

‖Π⊥0 ω(t)‖2
‖ω̄λ0(t)‖2 6

λ1(W (ω0)− λ0H(ω0))
λ0(λ1H(ω0)−W (ω0))

e−2ν(λ1−λ0)t. (3.8)

This estimate gives the relative error from the significant part of the solution of the
Navier–Stokes equations to the shadowing curve at every instant of time.

(2) A second interpretation of theorem 3.1 is in terms of the decay proper-
ties of the significant part of the solutions of the Navier–Stokes equations. Since
(d/dt)H(ω(t)) = −2νW (ω(t)) 6 −2νλ0H(ω(t)), we have H(ω(t)) 6 H(ω0)e−2νλ0t

and therefore

‖Π⊥0 ω(t)‖2 6 2λ1(W (ω0)− λ0H(ω0))
λ1H(ω0)−W (ω0)

H(ω0)e−2νλ1t. (3.9)
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This last estimate rephrases the attractor properties of the ABC-manifold (for initial
conditions as specified in theorem 3.1) in terms of the familiar L2 norm on the
significant part of the solutions of the Navier–Stokes equations instead of the more
precise but less familiar scaled Lyapunov function used before.

(3) In Foias & Saut (1984) it is shown that for any regular solution ω(t), there
exists some Λ in the spectrum of (−∆), such that L(ω(t)) → Λ − λ0, for t → ∞.
Theorem 3.1 implies that Λ = λ0, if W (ω(0)) < λ1H(ω(0)).

Also, from theorem 2 of Foias & Saut (1984), it follows that if Λ = λ0 and if λ1 <
2λ0, then limt→∞ eλ1νtΠ1u(t) exists. Here Π1 is the projection onto the eigenspace
of the eigenvalue λ1 of (−∆). Theorem 3.1 generalizes this to limt→∞ eλ1νtΠ⊥0 u(t)
exists, without any condition on λ1.

(4) Theorem 3.1 slightly improves the following estimate for large t > 0 due to
van Groesen (1988):

‖Π⊥0 ω(t)‖
‖Π0ω(t)‖ 6 Ce−νσt, (3.10)

where C, σ > 0 are constants subject to the condition σ 6 (λ1 − λ0)2/λ1. To deduce
it, we substitute the estimate 2λ0H(ω) 6 2W (ω) = ‖Π0ω‖2 + ‖Π⊥0 ω‖2 into (3.4)
and get

L̂(ω) > λ0(λ1 − λ0)
λ1

‖Π⊥0 ω‖2
‖Π0ω‖2 + ‖Π⊥0 ω‖2

.

Substituting this inequality into (3.5) and recombining terms gives

[λ0(λ1H(ω0)−W (ω0))− e−2ν(λ1−λ0)t(λ1 − λ0)(W (ω0)− λ0H(ω0))]‖Π⊥0 ω(t)‖2
6 e−2ν(λ1−λ0)tλ1(W (ω0)− λ0H(ω0))‖Π0ω(t)‖2. (3.11)

Because of the hypotheses of theorem 3.1 we have λ1H(ω0) − W (ω0) > 0. If in
addition ω0 is such that

W (ω0) <
λ0(2λ1 − λ0)

λ1
H(ω0),

then the expression on the left-hand side in front of ‖Π⊥0 ω(t)‖2 is positive for all
t > 0. If not, then this is true for

t >
1

2ν(λ1 − λ0)
ln
(

(λ1 − λ0)(W (ω0)− λ0H(ω0))
λ0(λ1H(ω0)−W (ω0))

)
.

In conclusion, there is some T0 > 0, depending on ω0, such that for t > T0

‖Π⊥0 ω(t)‖2
‖Π0ω(t)‖2 6

λ1(W (ω0)− λ0H(ω0))e−2ν(λ1−λ0)t

λ0(λ1H(ω0)−W (ω0))− e−2ν(λ1−λ0)t(λ1 − λ0)(W (ω0)− λ0H(ω0))
.

(3.12)
Since (λ1 − λ0)2/λ1 = (λ1 − λ0)(1 − λ0/λ1) < λ1 − λ0, this result slightly
improves (3.10).

Note that, in general, the projection curve Π0ω(t) differs from the shadowing curve
ω̄λ0(t), although both are in the manifold of ABC flows.

(5) From (3.9) and (3.12) we can infer that ω(t)/‖ω(t)‖ approaches a specific
normalized element of E0 as t→∞. To see this, note that since Π0ω(0) ∈ E0 and E0
is one dimensional, there exists some function f(t) such that Π0ω(t) = f(t)Π0ω(0).
The function f(t) is continuous because ω(t) is continuous and Π0ω(0) never vanishes
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(the eigenfunction of the first eigenvalue of the Laplacian is never zero). Note that
if f(t0) = 0 for some t0 > 0, then Π0ω(t0) = 0.

However, this cannot happen. To see this, we first observe that if Π0ω(t0) = 0, then
necessarily Π0ψ(t0) = 0, so that ‖Π⊥0 ω(t0)‖2 > 2λ1H(ω(t0)) by a standard Poincaré
inequality. Thus (3.4) implies that L̂(ω(t0)) > λ1 − λ0. But by (3.5) in theorem 3.1
we always have L̂(ω(t)) < λ1 − λ0, for all t > 0. Hence Π0ω(t0) 6= 0.

Thus f(t) will have a definite sign, which is positive since f(0) = 1. Therefore
(3.12) implies that

lim
t→∞

ω(t)
‖ω(t)‖ = lim

t→∞
Π0ω(t)
‖ω(t)‖ + lim

t→∞
Π⊥0 ω(t)
‖ω(t)‖ =

Π0ω(0)
‖Π0ω(0)‖ .

In other words, in the hypotheses of theorem 3.1, the flow of the Navier–Stokes
equations ‘self-organizes’ itself at infinity.

(6) If ω(t) is a solution of the Navier–Stokes equation which satisfies the conditions
of theorem 3.1, then we can show that the shadowing curve ω̄λ0(t) and the projected
curve Π0ω(t) decay exactly like e−νλ0t. To be precise, we have

‖ω̄λ0(t)‖eνλ0t = O(1) =
e−νλ0t

‖ω̄λ0(t)‖ and ‖Π0ω(t)‖eνλ0t = O(1) =
e−νλ0t

‖Π0ω(t)‖ .

Using these decay rates we will show that the solutions on the ground-state manifold
E0 are stable. To prove these decay rates we first show that H(ω(t)) decays exactly
like e−2νλ0t.

Let ω(t) be a solution of the Navier–Stokes equation which satisfies the conditions
of theorem 3.1. Denoting by ‖ · ‖ the L2-norm, equation (3.7) states that

d
dt
H(ω(t)) = −2νW (ω(t)) = −ν‖ω(t)‖2 = −ν(‖Π0ω(t)‖2 + ‖Π⊥0 ω(t)‖2). (3.13)

Using the inequality W (ω(t)) > λ0H(ω(t)), we conclude that

H(ω(t)) 6 H(ω0)e−2νλ0t. (3.14)

Substituting (3.8) into (3.13) and recalling that H(ω̄λ0(t)) = H(ω(t)) > H(Π0ω(t)),
we get

d
dt
H(ω(t)) > −ν‖Π0ω(t)‖2 − νC(ω0)e−2ν(λ1−λ0)t‖ω̄λ0(t)‖2

= −2νλ0[H(Π0ω(t)) + C(ω0)e−2ν(λ1−λ0)tH(ω̄λ0(t))]

> −2νλ0[1 + C(ω0)e−2ν(λ1−λ0)t]H(ω(t)),

where

C(ω0) =
λ1(W (ω0)− λ0H(ω0))
λ0(λ1H(ω0)−W (ω0))

.

This implies that

d
dt

lnH(ω(t)) > −2νλ0[1 + C(ω0)e−2ν(λ1−λ0)t].

Integration of this inequality gives

H(ω(t)) > H(ω0)e−2νλ0t exp
(
C(ω0)

λ0

λ1 − λ0
[e−2ν(λ1−λ0)t − 1]

)
.
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Define

C̃(ω0) = C(ω0)
λ0

λ1 − λ0
.

Then

exp
(
C(ω0)

λ0

λ1 − λ0
[e−2ν(λ1−λ0)t − 1]

)
> e−C̃(ω0),

so we have
e−C̃(ω0)H(ω0) 6 H(ω(t))e2νλ0t 6 H(ω0) (3.15)

by (3.14). This proves that H(ω(t)) decays exactly like e−2νλ0t.
Since by definition H(ω̄λ0(t)) = H(ω(t)), we get

H(ω0)e−C̃(ω0) 6 1
2λ0
‖ω̄λ0(t)‖2e2νλ0t 6 H(ω0),

which implies that ‖ω̄λ0(t)‖ ∼ e−νλ0t.
Furthermore, using (3.12) we get for t > T0

2λ0H(ω(t)) 6 2W (ω(t)) = ‖Π0ω(t)‖2 + ‖Π⊥0 ω(t)‖2
6 (1 + C1(ω0, t)e−2ν(λ1−λ0)t)‖Π0ω(t)‖2,

where C1(ω0, t) is the expression on the right-hand side of (3.12), divided by
e−2ν(λ1−λ0)t. Note that C1(ω0, t) < C1(ω0, T0) for t > T0. With the estimate (3.15)
on H(ω(t)) this gives

‖Π0ω(t)‖2 > 2λ0

1 + C1(ω0, T0)
H(ω0)e−C̃(ω0)e−2νλ0t.

Also, using ‖Π0ω(t)‖2 6 2λ0H(ω(t)) 6 2λ0H(ω0)e−2νλ0t, we see that

2λ0

1 + C1(ω0, T0)
H(ω0)e−C̃(ω0)e−2νλ0t 6 ‖Π0ω(t)‖2 6 2λ0H(ω0)e−2νλ0t, (3.16)

hence ‖Π0ω(t)‖ ∼ e−νλ0t for t large.
After determining these decay rates, we are ready to prove that the solutions

on the ground-state manifold E0 are stable. Let ω̂(t) be a solution in E0, hence
ω̂(t) = ω̂(0)e−νλ0t. Let ω0 be some initial condition near ω̂(0) and let ω(t) be
the solution of the Navier–Stokes equations which starts at ω(0) = ω0. Define
ε = ‖ω0 − ω̂(0)‖/‖ω̂(0)‖. If ε is sufficiently small, then

2(W (ω0)− λ0H(ω0)) 6 ‖Π⊥0 ω0‖2 = ‖Π⊥0 (ω0 − ω̂(0))‖2 6 ‖ω0 − ω̂(0)‖2 = ε2‖ω̂(0)‖2.
Hence ω0 satisfies the conditions of theorem 3.1 and T0 = 0 (T0 is defined in conse-
quence (4)). Furthermore, C̃(ω0) = O(ε2) and C1(ω0, 0) = O(ε2).

From conclusion (4) it follows that ‖Π⊥0 ω(t)‖2 = O(ε2e−2ν(λ1−λ0)t‖Π0ω(t)‖2).
Also, since E0 is one dimensional, we can define some function f(t) such that

Π0ω(t) = f(t)ω̂(t) = f(t)e−νλ0tω̂(0).

From (3.16) it follows that

2λ0

1 + C1(ω0, 0)
H(ω0)e−C̃(ω0)e−2νλ0t 6 |f(t)|2e−2νλ0t‖ω̂(0)‖2 6 2λ0H(ω0)e−2νλ0t.
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Since C̃(ω0) = O(ε2), C1(ω0, 0) = O(ε2), and λ0H(ω0) 6 W (ω0) = W (ω̂(0))(1 +
O(ε)), this implies

|f(t)|2 =
λ0H(ω0)
W (ω̂(0))

(1−O(ε2))2 = (1 +O(ε))(1−O(ε2))2 = (1 +O(ε))2.

So we can conclude |f(t)| = 1 +O(ε) and therefore

‖ω(t)− ω̂(t)‖2 = ‖Π0ω(t)− ω̂(t)‖2 + ‖Π⊥0 ω(t)‖2
= |f(t)− 1|2‖ω̂(t)‖2 +O(ε2e−2ν(λ1−λ0)t‖Π0ω(t)‖2)

= O(ε2)‖ω̂(t)‖2 +O(ε2|f(t)|2)‖ω̂(t)‖2 = O(ε2)‖ω̂(t)‖2.
So we see that the solutions in E0 are stable, i.e. if initially ‖ω(0)− ω̂(0)‖/‖ω̂(0)‖ =
O(ε), then ‖ω(t)− ω̂(t)‖/‖ω̂(t)‖ = O(ε), for all time.

(7) As a final consequence of theorem 3.1 we will show that it implies that the
solutions on the manifold E1 (eigenfunctions with eigenvalue λ1) are unstable under
perturbations in the direction E0. Let ω̂1 ∈ E1\{0} and ω̂0 ∈ E0\{0}. Define ωε =
ω̂1 + εω̂0. This implies

W (ωε) = λ1H(ω̂1) + ε2λ0H(ω̂0) and H(ωε) = H(ω̂1) + ε2H(ω̂0).

Write α = H(ω̂0)/H(ω̂1) > 0, µ1 = λ0/λ1 < 1. Then

W (ωε)
H(ωε)

= λ1
1 + ε2µ1α

1 + ε2α
.

Since µ1 < 1, we see immediately that 1 + ε2µ1α 6 1 + ε2α with equality only if
ε = 0. Hence W (ωε)/H(ωε) < λ1, for ε 6= 0. This implies that L̂(ωε) < λ1−λ0. Thus
theorem 3.1 implies that a solution which starts at ωε with ε 6= 0 is attracted by the
set E0. However, if ε = 0, the solutions stays in the set E1.

To be explicit, let ωε(t) be the solution of Navier–Stokes with initial condition ωε
and ω̂1(t) = ω̂1e

−νλ1t is the solution of Navier–Stokes with initial condition ω̂1. Then

‖ωε(t)− ω̂1(t)‖2 = ‖Π0(ωε(t)− ω̂1(t))‖2 + ‖Π⊥0 (ωε(t)− ω̂1(t))‖2 > ‖Π0ωε(t)‖2.
From (3.16) we get that

‖Π0ωε(t)‖2 > 2λ0

1 + C1(ωε, T0)
H(ωε)e−C̃(ωε)e−2νλ0t,

for t > T0. So we can conclude that

‖ωε(t)− ω̂1(t)‖2
‖ω̂1(t))‖2 > 2λ0

1 + C1(ωε, T0)
H(ωε)
‖ω̂1‖2 e−C̃(ωε)e2ν(λ1−λ0)t,

for t large. This implies an exponential growth in the scaled distance between the
solutions.

(d ) Navier–Stokes on a sphere
Many statements proved before go through if we consider a sphere in R3 instead

of a compact domain in the plane. To be specific, we consider the Navier–Stokes
equations on a sphere S of radius R in R3, i.e.

ω̇ = −v · ∇ω + ν∆ω = {ψ, ω}+ ν∆ω on S.
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If ν = 0, these equations become the Euler equations and a family of stationary
solutions are given by

−∆ωλ = λωλ.

These are zonal flows. There are no harmonic functions on a sphere and the small-
est eigenvalue of (−∆) is λ0 = 2/R2. Again, the next eigenvalue is called λ1. The
dimension of the eigenspace of the eigenvalue λ0 is three; the space is

Vλ0 = span{sinϕ sin θ, sinϕ cos θ, cosϕ},
where ϕ, θ are the standard spherical coordinates. The solutions in Vλ0 are called
spherical ABC flows. In Chern & Marsden (1990) it is shown that they are Lyapunov
stable.

The family Vλ0 is an attractor for the solutions of Navier–Stokes equation, with
a cone-shaped basin of attraction. Indeed, we can just quote theorem 3.1 and prove
it in exactly the same way as we did before. The consequences (2)–(4), (7) and the
first part of (6) go through for the spherical case as well. However, for the other
consequences we have used the one dimensionality of the family of ground states
(E0), allowing us to define a unique shadowing curve, which at each time lies on the
same H-level set as the solution. In the spherical case, however, the family of ground
states (Vλ0) is three-dimensional. Now there is a family of shadowing curves, which
are all equivalent for our purposes.

To be specific, let ω(t) be a solution of the Navier–Stokes equations with initial
condition ω(0) such that W (ω(0)) < λ1H(ω(0)). Any curve

ω̄(t) = α1(t) sinϕ sin θ + α2(t) sinϕ cos θ + α3(t) cosϕ,

with

α2
1(t) + α2

2(t) + α2
3(t) =

3λ0

πR3H(ω(t)),

can act as a shadowing curve, since they are on the same H-level set as the solution
ω(t).

4. Ideal homogeneous incompressible RMHD

After this analysis of the Navier–Stokes equations to illustrate our method, we will
concentrate on the main system, the RMHD equations with dissipation. From now
on, the shorthand notation u = (ω,A) will be used. If we ignore the viscosity and
resistance, i.e. ν = η = 0, then the RMHD equations form a Hamiltonian system
on the dual of the semidirect product Lie algebra consisting of functions on D act-
ing on themselves by Poisson bracket (Marsden & Morison 1984). This Lie–Poisson
space admits an infinite number of Casimir functions of the form

∫
D ωF (A) dx and∫

DG(A) dx with F and G arbitrary real-valued functions of a real variable (Holm et
al. 1985). The Hamiltonian function H for this system is the total energy (1.2).

In this work we shall consider the family of stationary solutions given by

−∆Ac,λ = λAc,λ, ψc,λ = −cAc,λ, (4.1)

where ωc,λ = −∆ψc,λ, c ∈ R is an arbitrary number and λ is a positive eigenvalue of
(−∆) with zero boundary conditions. We will use the two Casimir functions

I1(u) =
∫
D
ωA dx and I2(u) = 1

2

∫
D
A2 dx (4.2)
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in order to variationally characterize these stationary solutions. It is easily verified
that the critical points of H + c I1(u)− (1− c2)λ I2(u) are the stationary solutions
defined in (4.1). Equivalently, the stationary solutions in (4.1) are constrained critical
points of the Hamiltonian on level sets of I1 and I2. If ũ = (ω̃, Ã) denotes a stationary
solution as described by (4.1) with I1(u) = γ1 and I2(u) = γ2, where γ1, γ2 ∈ R and Ã
is an eigenfunction of −∆ with eigenvalue λk (or, equivalently, a constrained critical
point of H on the level set {u | I1(u) = γ1, I2(u) = γ2}), then the parameter c is
given by

c = − γ1

2λkγ2
.

Theorem 4.1. Let Cc,λ(u) = cI1(u) − (1 − c2)λI2(u). For every c ∈ R we have
the following relations:

(H + Cc,λ)(ω,A) = 1
2

∫
D

(|∇(ψ + cA)|2 + (1− c2)[|∇A|2 − λA2]) dx

= 1
2

∫
D

(|∇(ψ + cA)|2 + (1− c2)A(J − λA)) dx,

(H + Cc,λ)(ωc,λ, Ac,λ) = 0,

(H + Cc,λ)(ωc,λ −∆ξ, Ac,λ + α) = 1
2

∫
D

(|∇(ξ + cα)|2 + (1− c2)[|∇α|2 − λα2]) dx.

Let λ0 denote the first positive eigenvalue of (−∆) with zero boundary conditions.
If |c| < 1, the relations above imply that the stationary solutions corresponding
to λ = λ0 are minima of H + Cc,λ0 . In other words, these stationary solutions
are conditionally Lyapunov stable (that is, Lyapunov stable as long as classical
solutions exist) in the semi-norm on the finite perturbations (−∆ξ, α) given by
[(H + Cc,λ0)(ωc,λ0 −∆ξ, Ac,λ0 + α)]1/2.

Proof. The proof is standard and follows the method in Holm et al. (1985). One
directly verifies the first relation which in turn implies the second using the def-
inition of the stationary solutions considered. The third relation follows by sub-
tracting from the left-hand side two terms that are zero, (H + Cc,λ)(ωc,λ, Ac,λ) and
D(H + Cc,λ)(ωc,λ, Ac,λ) · (−∆ξ, α), regrouping the summands in the integrand and
integrating by parts, taking into account that ψc,λ, Ac,λ, ξ, and α all vanish on the
boundary.

It is clear that [(H + Cc,λ0)(ωc,λ0 −∆ξ, Ac,λ0 + α)]1/2 defines a semi-norm whose
null space is given by {(−∆ξ, α) | α ∈ E0, ξ = −cα}, where E0 is the λ0-eigenspace
of (−∆). Conditional Lyapunov stability follows now from the third relation by
conservation of H and Cc,λ0 and by invoking the short-time existence theorem for
classical solutions of planar MHD due to Kozono (1989). These Lyapunov stable
stationary solutions are minima since the second variation of H + Cc,λ0 has the same
expression as the third identity above.

As in the case of the ABC flows for the Navier–Stokes equations, we see that the
stationary solutions considered here are conditionally Lyapunov stable as a family
and not individually. The proof shows that the null space of the stability semi-norm
consists precisely of the stationary solutions (4.1).

In what follows, our interest is mainly in the conditionally Lyapunov stable sta-
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tionary solutions, called ground states. Define

Ac = Ac,λ0 , ψc = ψc,λ0 , ωc = −∆ψc and Cc = Cc,λ0 .

If a = ‖Ac‖L2 , the values of the Casimirs I1, I2, Cc and the Hamiltonian H at the
equilibrium (ωc, Ac) are given by:

I1(uc) = −cλ0a
2, I2(uc) = 1

2a
2, H(uc) = 1

2λ0(1 + c2)a2 = −Cc(uc).
The eigenvalue λ0 is simple (Aubin 1982, ch. 4); hence the family of ground states
considered is a two-dimensional submanifold of the space of all (ω,A)’s parametrized
by a ∈ R and |c| < 1.

A more convenient way to parametrize the ground states for our purpose is by using
the integrals I1 and I2. In all that follows we shall fix χ0 to be a λ0-eigenfunction of
(−∆) whose L2-norm equals 1. We define

Ā±(γ2) = ±
√

2γ2χ0 and ω̄±(γ1, γ2) = −cλ0Ā±, where c = − γ1

2λ0γ2
.

Thus γ1 and γ2 determine the I1- and I2-level sets, respectively. The family of ground
states is

M = {(ω̄±(γ1, γ2), Ā±(γ2)) | γ2 > 0, |γ1| < 2λ0γ2}.

5. Dissipative solutions

Under the dynamics of the RMHD equations with dissipation, the stationary
solutions defined by equation (4.1) form invariant families. Let Ek denote the λk-
eigenspace of (−∆) with zero boundary conditions. Define the families Sk ⊂ Ek ×Ek
by Sk := {(−cλkΥk,Υk) | c ∈ R,Υk ∈ Ek}.

Theorem 5.1. For k ∈ N0, c ∈ R and Υk ∈ Ek, define

Â(t) = e−ηλktΥk, ω̂(t) = −cλke−νλktΥk.

The pair (ω̂(t), Â(t)) determines a solution of the dissipative RMHD equations in
Sk for t ∈ R. Variations of c and Υk give all the solutions of the dissipative RMHD
equations which at some t0 (and hence for all t) lie in Sk.

Proof. A direct verification shows that the formulae above satisfy the dis-
sipative RMHD equations. By global existence and uniqueness of the classical
solutions for the dissipative RMHD equations (Temam 1988, §3.3), these are
the only solutions that have initial conditions in Sk. Conversely, if a solution
(ω̃(t), Ã(t)) is such that (ω̃(t0), Ã(t0)) ∈ Sk for some t0, then (ω̃(t), Ã(t)) =
(ω̃(t0)e−νλk(t−t0), Ã(t0)e−ηλk(t−t0)) for all t ∈ R, i.e. this solution is necessarily in Sk.

Theorem 5.2. If ν > η then the family of ground states M is invariant under
the dynamics of the RMHD equations with dissipation.

Proof. It is easy to see that M⊂ S0. Hence solutions starting in M look like

(ω(t), A(t)) = (−acλ0e−νλ0tχ0, ae−ηλ0tχ0),

for some a ∈ R and |c| < 1. Since ν > η the quotient |ce−νλ0t/e−ηλ0t| =
|c| |e−(ν−η)λ0t| < 1 and thus the above solution is in M for all time.
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In order to show how solutions of the RMHD equations with dissipation are attract-
ed by shadowing curves of ground states in M, we consider the time behaviour of
the relevant ‘conserved quantities’. For later analysis, it is convenient to introduce
the semi-definite combination

K(u) = H(u)− λ0I2(u) = 1
2

∫
D
ωψ dx+ 1

2

∫
D
A(J − λ0A) dx > 0. (5.1)

Theorem 5.3. For any solution u(t) of the RMHD equations with dissipation sat-
isfying the boundary conditions BC1 or BC2, the time behaviour of the Hamiltonian
and the Casimir functionals is given by

d
dt
H(u(t)) = −ν

∫
D
ω2 dx− η

∫
D
J2 dx 6 −2 min(ν, η)λ0H(u),

d
dt
I2(u(t)) = −η

∫
D
AJ dx 6 −2ηλ0I2(u),

d
dt
K(u(t)) = −ν

∫
D
ω2 dx− η

∫
D
J(J − λ0A) dx 6 −2 min(νλ0, ηλ1)K(u).


(5.2)

With the boundary conditions BC2, we have in addition

d
dt
I1(u(t)) = −(ν + η)

∫
D
ωJ dx.

Proof. Indeed, differentiation of the expressions for the Hamiltonian and Casimirs
gives

d
dt
H(u(t)) = −ν

∫
D
ω2 dx− η

∫
D
J2 dx− ν

∫
∂D

ω
∂ψ

∂n

d
dt
I2(u(t)) = −η

∫
D
AJ dx

d
dt
K(u(t)) = −ν

∫
D
ω2 dx− η

∫
D
J(J − λ0A) dx− ν

∫
∂D

ω
∂ψ

∂n

d
dt
I1(u(t)) = −(ν + η)

∫
D
ωJ dx− ν

∫
∂D

ω
∂A

∂n
.

Both boundary conditions imply that the boundary integrals in the time derivatives
of H and K vanish. The boundary integral in the time derivative of I1 vanishes only
with the boundary conditions BC2.

The inequalities in the theorem follow from Poincaré-like inequalities.

6. Shadowing curves on ground-state solutions

In this section we are using either the boundary conditions BC1 or BC2. We are
interested in the deviation of a solution of the RMHD equations with dissipation
from the family of ground states. To find this deviation, we will define a shadowing
curve on the manifold of ground states uniquely determined by the given solution
u(t).
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In what follows it is useful to introduce the quantity

c(u) = − I1(u)
2λ0I2(u)

. (6.1)

We project every u = (ω,A) with
∫
D Aχ0 dx 6= 0 and |c(u)| < 1 onto the family of

ground states in the following way. Define

Ā(u) = sgn
(∫
D
Aχ0 dx

)√
2I2χ0, ω̄(u) = −c(u)λ0Ā(u), ū(u) = (ω̄(u), Ā(u)).

Then ū(u) is a projection of u on the ground states and

I1(u) = I1(ū) and I2(u) = I2(ū).

In order to measure the distance between u and ū(u) we look at the Lyapunov
functional L(u) = H(u)+Cc(u) used in theorem 4.1. This functional can be written as

L(u) = K(u) + c(u)I1(u) + c(u)2λ0I2(u). (6.2)

Next, we write u = (ω,A) as

A = Ā(u) + α and ω = ω̄(u)− c(u)j −∆ϕ, where j = −∆α, (6.3)

and α is a function on D vanishing on the boundary. The Lyapunov functional L(u)
is a norm for (α, ϕ), if

∫
D Aχ0 dx 6= 0 and |c(u)| < 1. We make this precise in the

following lemma.

Lemma 6.1. Let u = (ω,A) be such that
∫
D Aχ0 dx 6= 0 and |c(u)| < 1. Define

α and ϕ as described in (6.3). Then the Lyapunov functional L(u) measures the
distance between u and its projection ū(u), since

√
L(u) is equivalent to the norm

whose square is given by

[[ϕ]]21 + (1− c(u)2)[[Π⊥0 α]]21,

where Π⊥0 is the projection onto the space L2-orthogonal to E0 and [[f ]]21 = ‖∇f‖2L2 .

Proof. Since I2(u) = I2(ū), we have

2
∫
D
αĀ dx = −

∫
D
α2 dx. (6.4)

Furthermore, I1(u) = I1(ū) and (6.4) imply

λ0

∫
D
ϕĀ dx = −

∫
D

(−∆ϕ)α dx+ c

∫
D
α(j − λ0α) dx. (6.5)

With the notation above, the functional L(u) in (6.2) can be written as

L(u) = 1
2

∫
D

[|∇ϕ|2 + (1− c(u)2)α(j − λ0α)] dx.

This expression shows that if |c(u)| < 1, then
√
L(u) is equivalent to the semi-norm

whose square is given by

[[ϕ]]21 + (1− c(u)2)[[Π⊥0 α]]21,

Note that [[·]]1 is a true norm on the space of H2 functions which vanish on the
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boundary. Hence L(u) = 0 if and only if ϕ = 0 and α = bχ0, for any b ∈ R. Using
the definition of Ā and substituting α = bχ0 in equation (6.4) implies that

b = 0 or b = −2
√

2I2(u) sgn
(∫
D
Aχ0 dx

)
.

Also, substitution of α = bχ0 in the definition of α gives

A =
(

sgn
(∫
D
Aχ0 dx

)√
2I2(u) + b

)
χ0.

Thus b = 0 gives

A = sgn
(∫
D
Aχ0 dx

)√
2I2(u)χ0 = Ā(u).

However, if ∫
D
Aχ0 dx 6= 0 and b = −2

√
2I2(u) sgn

(∫
D
Aχ0 dx

)
,

then

A = − sgn
(∫
D
Aχ0 dx

)√
2I2(u)χ0,

so integrating against χ0 yields the nonsensical expression∫
D
Aχ0 dx = − sgn

(∫
D
Aχ0 dx

)√
2I2(u),

thus showing that this solution for b is not allowed. We conclude thus that L(u) = 0
if and only if ϕ = 0 and α = 0 which shows that L(u) measures the distance between
u and the projection ū(u).

If u(t) is a solution of the RMHD equations such that |c(u(t))| < 1 and∫
DA(t)χ0 dx 6= 0 for all t > 0, then we can define the ground-state projection

curve ū(u(t)). To study the deviation from this projection curve, we define a scaled
Lyapunov functional

L̂(u) =
L(u)
I2(u)

=
K(u)
I2(u)

− λ0c(u)2 (6.6)

that depends on c(u) and the quotient

Q(u) =
K(u)
I2(u)

, i.e. Q(u)
∫
D
A2 dx =

∫
D
ωψ dx+

∫
D
A(J − λ0A) dx. (6.7)

There are some immediate a priori estimates on Q(u) and c(u) that will be used
later.

Lemma 6.2. For any state u = (ω,A) with A 6= 0 we have Q(u) > 0. Further-
more,
• if Q(u) < λ0 then |c(u)| < 1;
• if Q(u) < λ1 − λ0 then

∫
D Aχ0 dx 6= 0.

Proof. In (5.1) it is shown that K(u) > 0, which implies Q(u) > 0 for any state u
with A 6= 0.
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To prove the next statement, we observe that for any state u with A 6= 0

|I1(u)| = sgn
(∫
D
ωA dx

)∫
D
ωA dx = sgn

(∫
D
ωA dx

)∫
D
∇ψ · ∇A dx

= 1
2

∫
D
|∇ψ|2 dx+ 1

2

∫
D
|∇A|2 dx− 1

2

∫
D

∣∣∣∣∇ψ − sgn
(∫
D
ωA dx

)
∇A
∣∣∣∣2 dx

= K(u) + λ0I2(u)− 1
2

∫
D

∣∣∣∣∇ψ − sgn
(∫
D
ωA dx

)
∇A
∣∣∣∣2 dx

= I2(u)(Q(u) + λ0)− 1
2

∫
D

∣∣∣∣∇ψ − sgn
(∫
D
ωA dx

)
∇A
∣∣∣∣2 dx. (6.8)

Now recall from (6.1) that c(u) = I1(u)/2λ0I2(u), so that (6.8) and the condition
Q(u) < λ0 imply that |c(u)| < 1.

Finally, if
∫
D Aχ0 dx = 0, then∫

D
A(J − λ0A) dx > (λ1 − λ0)

∫
D
A2 dx.

Hence

K(u) > 1
2

∫
D
ωψ dx+ (λ1 − λ0)I2(u)

and therefore Q(u) > λ1 − λ0, contradicting the hypothesis.

From this lemma it follows that we can define the projection curve ū(u(t)) for a
solution u(t) if Q(u(t)) < min(λ0, λ1 − λ0), for all t > 0. So we want to have an
estimate on Q(u(t)).

Lemma 6.3. Assume that either the boundary conditions BC1 or BC2 hold and
that η 6 ν 6 (λ1/λ0)η. For all t > 0, every solution u(t) of the dissipative RMHD
equations with initial condition u(0) = u0 such that Q(u0) < λ1 − λ0 satisfies

Q(u(t)) 6 Q(u0) and Q(u(t)) 6 C(u0)Q(u0)e−2(ν−η)λ0t, (6.9)

where C(u0) is given by

C(u0) = max
(

1, exp
(
λ0(ν − η)(Q(u0)− λ1 + λ0(ν/η))

(λ1η − λ0ν)(λ1 − λ0 −Q(u0))

))
.

This implies

K(u(t)) 6 K(u0)C(u0)e−2λ0νt, (6.10)

L̂(u(t)) 6 (L̂(u0) + λ0c(u0)2)C(u0)e−2(ν−η)λ0t. (6.11)

The proof of this lemma is done by analysing the time derivative of Q(u(t)). It is
quite technical and does not give much insight. It can be found in appendix A.

With lemma 6.3 we can show that |c(u(t))| < 1 and
∫
D A(t)χ0 dx 6= 0 for appropri-

ate initial conditions. Hence for solutions with these initial conditions the projection
curve ū(u(t)) exists.

Lemma 6.4. Assume that either the boundary conditions BC1 or BC2 hold and
that η 6 ν 6 (λ1/λ0)η. Every solution u(t) of the dissipative RMHD equations with
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initial conditions u(0) = u0 subject to Q(u0) < min(λ0, λ1 − λ0) and u0 is not a
ground state, satisfies for all t > 0 the inequalities

c(u(t))2 < 1, L̂(u(t)) > 0 and c(u(t))2 6 (L̂(u0)/λ0 + c(u0)2)C(u0)e−2(ν−η)λ0t.
(6.12)

Furthermore,
∫
D A(t)χ0 dx 6= 0 for all t > 0.

Proof. Lemma 6.3 states that if Q(u0) < λ1−λ0 then Q(u(t)) 6 Q(u0) for all t > 0.
Therefore, Q(u0) < min(λ0, λ1−λ0) implies that Q(u(t)) 6 Q(u0) < min(λ0, λ1−λ0)
for all t > 0. So with lemma 6.2 we see that |c(u(t))| < 1 and

∫
DA(t)χ0 dx 6= 0 for

all t > 0.
From Lemma 6.1 we see that |c(u)| < 1 implies that L(u) > 0, with equality only

if u is a ground state. This is impossible, because u0 is not a ground state and the
manifold of ground states is invariant. So we can conclude that L(u(t)) > 0; hence
L̂(u(t)) > 0 for all t > 0.

Remark 2. Note that for any state ū = (−cλĀ, Ā), Ā ∈ E0 we have Q(ū) = λ0c
2.

Hence ū is a stable ground state if and only if Q(ū) < λ0.

Remark 3. The condition on Q in lemma 6.4 gives a cone-like neighbourhood
of the family of ground states. Define µ = min(1, (λ1 − λ0)/λ0). Then

{u | Q(u) < µλ0} = {u | c(u)2 < µ and 0 6 L̂(u) < (µ− c(u)2)λ0}. (6.13)

Indeed, if Q(u) < µλ0, then by lemma 6.2 we have |c(u)| < 1. Therefore L̂(u) > 0,
which in turn implies

λ0c(u)2 = Q(u)− L̂(u) < µλ0.

Thus we have proved that c(u)2 < µ. Conversely, if c(u)2 < µ and L̂(u) < (µ −
c(u)2)λ0, then by definition,

Q(u) = L̂(u) + λ0c(u)2 < µλ0

and the equality (6.13) is proved.

Lemma 6.4 implies that if u(t) is a solution of the RMHD equations and Q(u(0)) <
min(λ0, λ1 − λ0), then we can define the ground-state projection curve ū(u(t)). And
L̂(u(t)) is a measure for the distance between the solution u(t) and its projec-
tion ū(u(t)). Without analysing the time behaviour of L̂, lemma 6.3 gives an estimate
on the distance between u(t) and ū(u(t)), which shows that ū(u(t)) is a shadowing
curve on the grounds states of the solution u(t).

Theorem 6.5. Assume that either the boundary conditions BC1 or BC2 hold and
that η < ν < (λ1/λ0)η. Let u(t) be a solution of the dissipative RMHD equations
with initial condition u(0) such that Q(u(0)) < min(λ0, λ1 − λ0). Define

c(u(t)) = − I1(u(t))
2λ0I2(u(t))

and ū(t) = ū(u(t)).

Define the functions α(t) and ϕ(t) on D, both vanishing on the boundary, to be such
that

u(t) = ū(t) + (−∆(−c(u(t))α(t) + ϕ(t)), α(t)).
Then there exists some C > 0 such that for t > 0

[[ϕ(t)]]21 + [[Π⊥0 α(t)]]21 6 Ce−2λ0(ν−η)t‖ū(t)‖2L2 =
C

λ0
e−2λ0(ν−η)t[[ū(t)]]21. (6.14)
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(Recall that the norm [[f ]]1 =
∫
D |∇f |2 dx.)

Proof. For |c(u)| < 1, L(u) is equivalent to the [[·]]21 norm. From lemma 6.4, it
follows that |c(u(t))| < 1 for all t > 0. Hence the inequality in (6.14) follows from
(6.11) by using that L(u) = L̂(u)I2(u) and I2(u) = I2(ū) = 1

2‖ū‖2L2 .
To prove the equality in (6.14) we use that ū can be written as

ū(t) = (c1(t)χ0, c2(t)χ0).

The definition of χ0, implies that [[χ0]]21 = λ0 and therefore

[[ū]]21 = λ0‖ū‖L2 ,

which implies the desired equality in (6.14).

7. Sharper estimates for the shadowing curves

The time derivative of the functional I1(u(t)) contains a boundary integral if the
boundary conditions BC1 are used (see theorem 5.3). This boundary term disap-
pears if we use the boundary conditions BC2. So the time derivative of the scaled
Lyapunov functional L̂(u(t)) will contain a boundary integral if we use the boundary
conditions BC1. This will make an analysis of this time derivative very difficult.

Therefore, in this section we will use exclusively the boundary condition BC2. This
enables us to improve the estimate in the theorem of the previous section by studying
the time derivative of the scaled Lyapunov function L̂. In that way we will get an
improved estimate for how fast solutions are attracted to their shadowing curve.

Theorem 7.1. Assume that η < ν < (λ1/λ0)η. Let u(t) be a solution of the dis-
sipative RMHD equations with boundary conditions BC2 and with initial condition
u(0) such that

Q(u(0)) 6 min
(
λ1 − λ0,

4η
ν + 3η

λ0

)
.

Define a shadowing curve on the family of ground states

Ā(u) = sgn
(∫
D
Aχ0 dx

)√
2I2(u)χ0, ω̄(u) = −c(u)λ0Ā(u), ū(u) = (ω̄(u), Ā(u)),

where

c(u) = − I1(u)
2λ0I2(u)

.

Define the functions α(t) and ϕ(t) on D, both vanishing on the boundary, to be such
that

u(t) = ū(u(t)) + (−∆(−c(u(t))α(t) + ϕ(t)), α(t)).
Then there exist constants C1 > 0 and C2 > 0 such that for all t > 0

L̂(u(t)) 6 L̂(u(0))C1e−2(λ1−λ0)ηt

[[ϕ(t)]]21 + [[Π⊥0 α(t)]]21 6 C2e−2(λ1−λ0)ηt‖ū(u(t))‖L2 = (C2/λ0)e−2(λ1−λ0)ηt[[ū(u(t))]]1.

(Recall that the norm [[f ]]1 =
∫
D |∇f |2 dx.)

Proof. In Appendix B we analyse the time behaviour of L̂(u(t)). It is shown that
d
dt
L̂(u(t)) 6 −2(λ1 − λ0)ηL̂(u) + η

2
1− c(u)2 L̂(u)2

Proc. R. Soc. Lond. A (1998)



Attracting curves on families of stationary solutions 1429

+(λ1 + 3λ0)(ν − η)
c(u)2

2(1− c(u)2)
L̂(u)

+
λ1η − λ0ν

2λ0(1− c(u)2)F (u(0))
max

(
λ1 − λ0,

(3λ1 − 2λ0)2

λ1 − λ0

)
(L̂(u))2, (7.1)

where

F (u) =


(λ1 − λ0)−Q(u), if λ0 > λ1 − λ0,

λ1 − λ0

λ0
(λ0 −Q(u)), if λ0 6 λ1 − λ0.

Define the positive function

f(t) =
1

1− c(u(t))2

(
2η +

λ1η − λ0ν

2λ0F (u(0))
max

(
λ1 − λ0,

(3λ1 − 2λ0)2

λ1 − λ0

))
L̂(u(t))

+(λ1 + 3λ0)(ν − η)
c(u(t))2

2(1− c(u(t))2)
> 0.

From the estimates (6.11) and (6.12) in lemmas 6.3 and 6.4, it follows that there
exists a constant C3(u(0) > 0 such that

f(t) 6 C3(u(0))e−2(ν−η)λ0t, (7.2)

for all t > 0. Setting N(t) = L̂(u(t))e2(λ1−λ0)ηt, the estimate (7.1) gives

d
dt
N(t) 6 f(t)N(t).

Applying Gronwall’s lemma to this differential inequality gives

N(t) 6 N(0) exp
(∫ t

0
f(τ) dτ

)
. (7.3)

Since
∫ t

0 f(τ) dτ 6 C3(u(0))/2λ0(ν − η) by (7.2), inequality (7.3) shows that there
exist a constant C4(u(0)) > 0 such that

L̂(u(t)) 6 L̂(u(0))C4(u(0)) e−2(λ1−λ0)ηt,

which proves the first estimate in the statement of the theorem. Now use this inequal-
ity, I2(u(t)) = I2(ū(u(t))), and [[ū]]21 = λ0‖ū‖2L2 to conclude the proof of the theorem.

8. Comparison to the general method

Our previous work (Derks et al. 1995) develops a general method of comparing
solution curves of a dissipative system with symmetries to carefully chosen shadowing
curves in the manifold of relative equilibria of an associated conservative system in
the setting of finite dimensional systems.

Although many aspects of this general method can be recognized in the analysis
of the two infinite-dimensional systems presented in this paper, there are also several
important differences. First, the set-up of a classical mechanical system with symme-
try on a cotangent bundle is replaced by considering systems on duals of Lie algebras.
Second, the role played by the momentum map is taken over by Casimir functionals.
Indeed, in the case of the Euler equations we work with the enstrophy W and in the
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case of the RMHD equations with I1 and I2. Third, the family of stationary solutions
happens to be invariant under the dynamics of the dissipative system. This remark-
able extra feature considerably simplifies certain aspects of the analysis by avoiding
several technical problems of adapted Lyapunov functionals which show up in the
general case. Fourth, we work with a scaled Lyapunov functional L̂(u) = L(u)/F (u),
with F (u) a constant of the motion of the conservative system, instead of working
with the Lyapunov functional L(u) as in Derks et al. (1995). Since F (u) is also a
norm for the states of the system, this leads to sharper estimates on the attraction
rate.

As stated above, in the general method for the finite dimensional case as presented
in Derks et al. (1995), we use the unscaled Lyapunov functional L(u) to analyse the
rate of attraction between a solution and its shadowing curve. This analysis shows
that there are two important features which determine an estimate of the rate of
attraction. One determining feature is the so-called ‘dissipation quotient’, which
measures the dissipative effects in a quasi-static approach. The other feature plays
a role if the family of relative equilibria is not invariant. Then we have to take into
account that all solutions are forced away from the manifold of relative equilibria.

To see which features will play a role if we use a scaled Lyapunov functional
to analyse an invariant family of relative equilibria, we will give below a heuristic
analysis of the time derivative of the quotient L̂(u). In order to do this, we have to
be more specific about the dissipative system.

We write the dissipative system as
du
dt

= XH(u) + P (u), (8.1)

with XH(u) a Hamiltonian vector field and P (u) some dissipative perturbation. The
conservative system generated by the Hamiltonian vector field XH (i.e. P = 0) has
either a momentum map J , related to some symmetry group G, and/or is defined on
some Poisson manifold whose Casimir functions are denoted by I1, . . . , Ik. We assume
that there is a manifold of relative equilibria, where each relative equilibrium is a
constrained minimum of the Hamiltonian on a level set of the conserved functionals,
namely the momentum map and/or the Casimir functions I1, . . . , Ik. In other words,
a relative equilibrium ū is a solution of the Euler–Lagrange equation

DH(ū) +DJξ̄(ū) +
k∑
i=1

λiDIi(ū) = 0,

with Lagrange multipliers ξ̄ and/or λ1, . . . , λk and where Jξ(u) = 〈J(u), ξ〉, for ξ
in the Lie algebra of G. Depending on the case considered, either J or the Casimir
functions I1, . . . , Ik can be absent in this equation. In the cases considered in this
paper, these manifolds of relative equilibria are the families of stable stationary
solutions.

For any solution u(t) of the dissipative system we define a shadowing curve ū(t)
on the family of relative equilibria. This curve has the characteristic property that
for all t > 0, J(u(t)) = J(ū(t)), and/or Ii(u(t)) = Ii(ū(t)), i = 1, . . . , k. Then
L(u) = H(u) − H(ū) is a Lyapunov functional, measuring the distance between u
and ū. If F (u) is some constant of the motion of the conservative system, then we
define the scaled Lyapunov functional

L̂(u) =
L(u)
F (u)

.

Proc. R. Soc. Lond. A (1998)



Attracting curves on families of stationary solutions 1431

Since L(u) and F (u) are conserved functions for the unperturbed Hamiltonian
system we have 〈DL(u), XH(u)〉 = 0 and 〈DF (u), XH(u)〉 = 0. This gives

d
dt
L̂(u(t)) =

L̇

F
− L Ḟ

F 2 = L̂

[〈DL(u), P (u)〉
L(u)

− 〈DF (u), P (u)〉
F (u)

]
. (8.2)

Recall that the Lyapunov functional L was chosen using the energy-momentum
method (see Simó et al. 1991) and/or the energy-Casimir method (see Holm et al.
1985). This means that for any relative equilibrium ū we have L(ū) = DL(ū) = 0.
Writing δu = u− ū and linearizing all expressions in (8.2) gives

〈DL(u), P (u)〉 = 〈D2L(ū)δu, P (ū) +DP (ū)δu〉+O((|δu|+ |P (ū)|)|δu|2),

L(u) = 1
2〈D2L(ū)δu, δu〉+O(|δu|3),

〈DF (u), P (u)〉 = 〈DF (ū), P (ū)〉+O(|δu|),
F (u) = F (ū) +O(|δu|),


(8.3)

where we assume that |P (ū)| is ‘small’, e.g. exponentially decaying, which is reason-
able if ū is exponentially decaying.

Since the family of relative equilibria is invariant for the dissipative equations, it
follows that P (ū) is tangent to the family of relative equilibria. To be explicit, for
every t > 0, fixed, we define on the family of relative equilibria the curve

ū(τ, t) = (ω̄(t)e−νλ0(τ−t), Ā(t)e−ηλ0(τ−t)), τ > t.
By theorem 5.1, this curve is a solution of

d
dτ
u = XH(u) + P (u),

which implies that
d
dτ
ū(τ, t) = P (ū(τ, t)),

for every τ > t, t > 0, since ū(τ, t) is a relative equilibrium; thus XH(ū(τ, t)) = 0.
Using the symmetry of D2L(ū(t)) and the identity ū(t) = ū(t, t), we have for all
variations δu and all t > 0

〈D2L(ū(t))δu, P (ū(t))〉 =
〈
δu,D2L(ū(t, t))

d
dτ

∣∣∣∣
τ=t

u(τ, t)
〉

=
〈
δu,

d
dτ

∣∣∣∣
τ=t

DL(ū(τ, t))
〉

= 0,

since DL(ū(τ, t)) = 0, because ū is a relative equilibrium. This and (8.3) imply

〈DL(u), P (u)〉
L(u)

=
〈D2L(ū)δu,DP (ū)δu〉

1
2〈D2L(ū)δu, δu〉 +O(|P (ū)|+ |δu|),

〈DF (u), P (u)〉
F (u)

=
〈DF (ū), P (ū)〉

F (ū)
+O(|δu|).

Definition 8.1. Define S(ū) to be the tangent space at ū to the level set

{u | J(u) = J(ū), Ii(u) = Ii(ū), i = 1, . . . , k};
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in this definition, depending on the case considered, either J or the Casimir functions
I1, . . . , Ik can be absent. Then to first order, δu ∈ S(ū). Relevant quantities for the
dynamics are the dissipation coefficient

β(ū) = max
δu∈S(ū)

〈D2L(ū)δu,DP (ū)δu〉
1
2〈D2L(ū)δu, δu〉

and the influence of the dissipation on the conserved functional F (u)

f(ū) =
〈DF (ū), P (ū)〉

F (ū)
.

With these notations we get the estimate

〈DL(u), P (u)〉
L(u)

− 〈DF (u), P (u)〉
F (u)

6 (β(ū)− f(ū)) +O(|P (ū)|+ |δu|)

and the problem becomes in estimating the last two higher-order terms. In the
ideal case (something that is happening in both cases considered in this paper),
one can find a constant C1 and a positive integrable function g1(t) (meaning∫∞

0 g1(τ) dτ <∞) such that

〈DL(u), P (u)〉
L(u)

− 〈DF (u), P (u)〉
F (u)

6 (β(ū)− f(ū)) + C1

√
L̂(u) + g1(t).

Therefore the time derivative of L̂ satisfies
d
dt
L̂(u) 6 L̂(u)(β(ū)− f(ū)) + C1L̂(u)

√
L̂(u) + g1(t)L̂(u). (8.4)

If β− f = limt→∞ β(ū)− f(ū) < 0 and there is a positive integrable function g2(t)
such that β(ū) − f(ū) 6 (β − f) + g2(t), then we can rewrite this estimate on the
time derivative of L̂ as an estimate on L̂ itself. For this purpose we introduce a new
function N(t) > 0 by

N(t)2 = exp
(
−(β − f)t−

∫ t

0
g(τ) dτ

)
L̂(u(t)),

where g(t) = g1(t) + g2(t) > 0. Taking the time derivative of the defining relation for
N and using (8.4) we get

2N
dN
dt

= exp
(
−(β − f)t−

∫ t

0
g(τ) dτ

)[
−(β − f)L̂− g(t)L̂+

d
dt
L̂

]
6 C1 exp

(
−(β − f)t−

∫ t

0
g(τ) dτ

)
L̂(u)

√
L̂(u)

= C1 exp
(

1
2(β − f)t+ 1

2

∫ t

0
g(τ) dτ

)
N3

6 C2e(β−f)t/2N3,

where

C2 = C1 exp
(

1
2

∫ ∞
0

g(τ) dτ
)
.
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This can be rewritten as
d
dt

(
1
N

)
> −1

2C2e(β−f)t/2

and so integration gives

1
N(t)

− 1
N(0)

> C2

β − f (1− e(β−f)t/2) > C2

β − f .

If N(0) 6 (f − β)/C2, then this leads to

N(t) 6 N(0)
(

1− C2N(0)
f − β

)−1

.

Thus, denoting

C0 = exp
(∫ ∞

0
g(τ) dτ

)
,

this inequality gives

L̂(u(t)) 6 C0L̂(u(0))
(

1− C2L̂(u(0))
f − β

)−2

e(β−f)t (8.5)

and we can draw the following conclusion.

Conclusion 8.2. If L(u(t)) is equivalent to |u− ū|21, for some semi-norm | · |1 and
F (u) is equivalent to some norm |u|22, then (8.5) implies

|u(t)− ū|21 6 C̃0e(β−f)t|u(t)|22,
for some constant C̃0, which depends on the initial condition.

If we know in advance that L̂(u(t)) has some exponential decay (as in case of the
RMHD equations), then we can substitute this decay rate into

√
L̂ in equation (8.4).

Applying Gronwall’s lemma leads immediately to L̂(u(t)) 6 L̂(u(0))C0e(β−f)t, for
some constant C0, independent of the initial condition.

In appendix C we will calculate β(ū) and f(ū) for the dissipative RMHD equation.
This calculation shows that

β = −2ηλ1 and f = −2ηλ0.

Thus the optimal estimate given by (8.5) is

L̂(u(t)) 6 L̂(u(0))Ce−2η(λ1−λ0)t,

for some constant C > 0, which is indeed the result achieved in §6.
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Appendix A. Proof of lemma 6.3

The time derivative of Q(u(t)) for a solution u(t) of the dissipative RMHD equa-
tions is
d
dt
Q(u(t)) =

1
I2

2
[K̇I2 −Kİ2]

=
1

2I2
2

[
−ν
∫
D
ω2 dx

∫
D
A2 dx+ η

∫
D
ωψ dx

∫
D
AJ dx

−η
∫
D
J2 dx

∫
D
A2 dx+ η

(∫
D
AJ dx

)2]
= − ν

I2

[∫
D
ω2dx− λ0

∫
D
ωψ dx

]
− 1

2I2
2

[
(ν − η)λ0

∫
D
ωψ dx

∫
D
A2 dx− η

∫
D
ωψ dx

∫
D
A(J − λ0A) dx

+η
∫
D

(J − λ0A)2 dx
∫
D
A2 dx− η

(∫
D
A(J − λ0A) dx

)2]
.

Using the Poincaré inequality
∫
D ω

2 > λ0
∫
D ωψ and (6.7), we get

d
dt
Q(u(t)) 6 − 1

I2

[
(ν − η)λ0Q(u)

∫
D
A2 dx− (ν − η)λ0

∫
D
A(J − λ0A) dx

−ηQ(u)
∫
D
A(J − λ0A) dx+ η

∫
D

(J − λ0A)2 dx
]
. (A 1)

We write A =
∑∞

k=0 akχk, where χk are the L2-normalized eigenfunctions of −∆,
with eigenvalues 0 < λ0 < λ1 6 λ2 6 · · ·. This gives

d
dt
Q(u(t)) 6 − 1

I2

∞∑
k=0

a2
k[(ν − η)λ0Q(u)− (ν − η)λ0(λk − λ0)

−ηQ(u)(λk − λ0) + η(λk − λ0)2]

= − η
I2

∞∑
k=0

a2
k

(
λk − ν

η
λ0

)
(λk − (λ0 +Q(u))). (A 2)

By lemma 6.2, Q(u) > 0 for all states u. Thus, to analyse the terms in this summa-
tion, we define for x > 0 and y > 0 the function

f(x, y) =
(
x− ν

η
λ0

)
(x− λ0 − y).

Since ν > η, we see immediately that f(λ0, y) > 0, for all y > 0. For all 0 6 y <
λ1 − λ0, the inequality ν/η < λ1/λ0 implies that f(λk, y) is positive for all k ∈ N.
(Note that if ν/η > λ1/λ0, then f(λk, y) < 0 for y sufficiently small.)

Hence dQ/dt 6 0 as long as Q(u(t)) < λ1−λ0. Thus the initial condition Q(u0) <
λ1 − λ0 implies that Q(u(t)) 6 Q(u0), for all time.

For fixed values of y, f(x, y) is a quadratic function, with a minimum at x̂(y) =
1
2((ν/η)λ0 +λ0 +y). From the imposed conditions on ν, η, it follows that λ0 6 x̂(y) <
λ1, if 0 6 y < λ1 − λ0. Hence for all k ∈ N and all 0 6 Q < λ1 − λ0 we have

f(λk, Q) > min(f(λ0, Q), f(λ1, Q)) = min
(
λ0Q

ν − η
η

, (λ1 − λ0 −Q)
(
λ1 − λ0

ν

η

))
.
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In other words, for k ∈ N and all 0 6 Q 6 λ1 − λ0(ν/η) we have

f(λk, Q) > λ0Q
ν − η
η

and for all k ∈ N and all λ1 − λ0(ν/η) < Q < λ1 − λ0 we have

f(λk, Q) > (λ1 − λ0 −Q)
(
λ1 − λ0

ν

η

)
.

Thus we distinguish two situations.
(1) If Q(u0) 6 λ1 − λ0(ν/η), then

d
dt
Q(u(t)) 6 −2λ0(ν − η)Q.

Hence for all t > 0 we have Q(u(t)) 6 Q(u0)e−2λ0(ν−η)t.
(2) If λ1 − λ0(ν/η) < Q(u0) < λ1 − λ0, then

dQ(u(t))
dt

< −2(λ1η − λ0ν)(λ1 − λ0 −Q) 6 −2(λ1η − λ0ν)(λ1 − λ0 −Q(u0)).

Thus there exists some

0 < T <
Q(u0)− λ1 + λ0(ν/η)

2(λ1η − λ0ν)(λ1 − λ0 −Q(u0))

such that Q(T ) = λ1−λ0(ν/η). So for t > T , we are in a similar situation as studied
in the previous case and we can conclude that for t > T we have

Q(u(t)) 6 Q(u(T ))e−2λ0(ν−η)(t−T ) 6 Q(u0)e−2λ0(ν−η)(t−T ). (A 3)

For t 6 T , e−2λ0(ν−η)(t−T ) > 1. Since for all t, we have Q(u(t)) 6 Q(u0); this implies
that the inequality in (A 3) is also valid for 0 6 t 6 T . Substitution of the upper
bound on T into (A 3) shows

Q(u(t)) 6 Q(u0) exp
(
λ0(ν − η)(Q(u0)− λ1 + λ0(ν/η))

(λ1η − λ0ν)(λ1 − λ0 −Q(u0))

)
e−2λ0(ν−η)t,

for t > 0.
With the estimate (6.9) on Q(u), we can immediately derive some estimates on

K(u) and L̂(u). The inequality for I2 in (5.2) implies that I2(u(t)) 6 I(u0)e−2ηλ0t.
This inequality and the remark that K(u) = Q(u)I2(u) immediately imply (6.10).
Finally, L̂(u) = Q(u)− λ0c(u)2 6 Q(u), which implies (6.11).

Appendix B. The time derivative of the scaled Lyapunov functional

Under the conditions of theorem 7.1, the time derivative of L̂(u(t)) satisfies the
following inequality.

Lemma B.1. Assume that η < ν < (λ1/λ0)η. Let u(t) be a solution of the dis-
sipative RMHD equations with boundary conditions BC2 and with initial condition
u(0) such that

Q(u(0)) 6 min
(
λ1 − λ0,

4η
ν + 3η

λ0

)
.

Then the time derivative of L̂(u(t)) satisfies
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d
dt
L̂(u(t)) 6 −2(λ1 − λ0)ηL̂(u) + η

2
1− c(u)2 L̂(u)2

+(λ1 + 3λ0)(ν − η)
c(u)2

2(1− c(u)2)
L̂(u)

+
λ1η − λ0ν

2λ0(1− c(u)2)F (u(0))
max

(
λ1 − λ0,

(3λ1 − 2λ0)2

λ1 − λ0

)
(L̂(u))2, (B 1)

where

F (u) =


(λ1 − λ0)−Q(u), if λ0 > λ1 − λ0,

λ1 − λ0

λ0
(λ0 −Q(u)), if λ0 6 λ1 − λ0.

Proof. By using equation (1.1) and the boundary conditions BC2, we get (see
theorem 5.3)

d
dt
I1(u(t)) = −(ν + η)λ0I1(u)− (ν + η)

∫
D

(−∆ϕ)(j − λ0α) dx

+(ν + η)c(u)
∫
D
j(j − λ0α) dx,

d
dt
I2(u) = −2ηλ0I2(u(t))− η

∫
D
α(j − λ0α) dx,

and
d
dt
K(u(t)) = −2νλ0K(u) + νλ0

∫
D

(−∆ϕ)ϕ dx

−ν
∫
D

(−∆ϕ)2 dx+ 2νc(u)
∫
D

(−∆ϕ)(j − λ0α) dx

−(η + c(u)2ν)
∫
D
j(j − λ0α) dx+ νλ0

∫
D
α(j − λ0α) dx.

Combining the expressions above and using the definition

c(u) = − I1(u)
2λ0I2(u)

,

we conclude that
d
dt
L(u(t)) =

d
dt
K(u(t)) + c(u)

d
dt
I1(u(t)) + c(u)2 λ0

d
dt
I2(u(t))

+[I1(u) + 2c(u)λ0I2(u)]
d
dt
c(u(t))

= −2νλ0L(u)− ν
∫
D

[(−∆ϕ)2 − λ0|∇ϕ|2] dx

+c(u)(ν − η)
∫
D

(−∆ϕ)(j − λ0α) dx

−(1− c(u)2)η
∫
D
j(j − λ0α) dx+ (ν − c(u)2η)λ0

∫
D
α(j − λ0α) dx.

Proc. R. Soc. Lond. A (1998)



Attracting curves on families of stationary solutions 1437

Thus the time derivative of L̂ = L/I2 is
d
dt
L̂(u(t)) =

1
I2(u)

[
d
dt
L(u(t))− L̂(u)

d
dt
I2(u(t))

]
= −2(ν − η)λ0L̂(u) + ηL̂(u)

1
I2(u)

∫
D
α(j − λ0α) dx

− 1
I2(u)

[
ν

∫
D

[(−∆ϕ)2 − λ0|∇ϕ|2] dx

−c(u)(ν − η)
∫
D

(−∆ϕ)(j − λ0α) dx

+(1− c(u)2)η
∫
D
j(j − λ0α) dx− (ν − c(u)2η)λ0

∫
D
α(j − λ0α) dx

]
.

Recall that we denote the L2-orthogonal projections onto the eigenspace E0 by
Π0 and onto its complement by Π⊥0 . Using eigenfunction expansions we see that
(j − λ0α), (−∆ϕ− λ0ϕ) ∈ E⊥0 , which implies that

−c(u)
∫
D

(−∆ϕ)(j − λ0α) dx =
∫
D

(Π⊥0 (−∆ϕ)− 1
2c(u)(j − λ0α))2 dx

−
∫
D

(Π⊥0 (−∆ϕ))2 dx− 1
4c(u)2

∫
D

(j − λ0α)2 dx

and also∫
D

[(−∆ϕ)2 − λ0|∇ϕ|2] dx =
∫
D

(Π⊥0 (−∆ϕ))2 dx− λ0

∫
D

(Π⊥0 ϕ)(−∆ϕ) dx.

Substitution of these identities in the equation for (d/dt)L̂ gives

d
dt
L̂(u(t)) = −2(ν − η)λ0L̂(u) + ηL̂(u)

1
I2(u)

∫
D
α(j − λ0α) dx

− 1
I2(u)

(ν − η)
∫
D

(Π⊥0 (−∆ϕ)− 1
2c(u)(j − λ0α))2 dx

− 1
I2(u)

[
η

∫
D

(Π⊥0 (−∆ϕ))2 dx− λ0ν

∫
D

(Π⊥0 ϕ)(−∆ϕ) dx

+(η − 1
4c(u)2(ν + 3η))

∫
D
j(j − λ0α) dx

−(ν − c(u)2

4
(ν + 3η))λ0

∫
D
α(j − λ0α) dx

]
. (B 2)

We have the following Poincaré-like inequalities:∫
D

(Π⊥0 (−∆ϕ))2 dx > λ1

∫
D

(Π⊥0 ϕ)(−∆ϕ) dx > 0 (B 3)∫
D
j(j − λ0α) dx > λ1

∫
D
α(j − λ0α) dx > 0. (B 4)

The definition of L and the relations ω̄(u) + c(u)λ0Ā(u) = 0, −∆Ā(u) = λ0Ā(u)
(valid by definition of the shadowing curve) imply that
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2L(u) = 2L(ū) +
∫
D

(−∆ϕ)ϕ dx+ (1− c(u)2)
∫
D
α(j − λ0α) dx

> (1− c(u)2)
∫
D
α(j − λ0α) dx,

which is equivalent to ∫
D
α(j − λ0α) dx 6 2

1− c(u)2L(u). (B 5)

We estimate the time derivative of L̂(u) neglecting the third term in the identity
(B 2), and using the inequalities (B 3)–(B 5). In order to apply (B 4) we need to know
that the coefficient of

∫
Dj(j − λ0α) dx is negative, i.e. η − 1

4c(u)2(ν + η) > 0. This
follows from lemma 6.3 and the hypothesis by using that

λ0c(u(t))2 6 Q(u(t)) 6 Q(u(0)) 6 4η
ν + 3η

λ0.

So we get
d
dt
L̂(u(t)) 6 −2(ν − η)λ0L̂(u) + η

2
1− c(u)2 L̂(u)2

−λ1η − λ0ν

I2(u)

[∫
D

(Π⊥0 ϕ)(−∆ϕ) dx+ (1− c(u)2)
∫
D
α(j − λ0α) dx

]
+
c(u)2

4I2(u)

[
−4(λ1η − λ0ν) + (ν + 3η)(λ1 − λ0)

] ∫
D
α(j − λ0α) dx.

Using that the third term is equal to

−λ1η − λ0ν

I2(u)
L̂(u) +

λ1η − λ0ν

I2(u)

∫
D

(Π0ϕ)(−∆ϕ) dx,

and employing (B 5) to bound above the integral in the last, we get
d
dt
L̂(u(t)) 6 −2(λ1 − λ0)ηL̂(u) + η

2
1− c(u)2 L̂(u)2

+(λ1 + 3λ0)(ν − η)
c(u)2

2(1− c(u)2)
L̂(u) +

λ1η − λ0ν

I2(u)

∫
D

(Π0ϕ)(−∆ϕ) dx.

(B 6)

Now we are left with estimating∫
D

(Π0ϕ)(−∆ϕ) dx = λ0

∫
D

(Π0ϕ)2 dx.

We will show that this integral is of order (L̂(u))2I2(u).
First we observe that

λ2
0

∫
D

(Π0ϕ)2 dx
∫
D

(Π0A)2dx =
(
λ0

∫
D
ϕ(Π0A) dx

)2

=
(
λ0

∫
D
ϕ(Ā+ Π0α) dx

)2

.

(B 7)
From (6.5) and using the Poincaré-like estimate

(λ1 − λ0)
∫
D
|∇(Π⊥0 α)|2 dx 6 λ1

∫
D
α(j − λ0α) dx

we get
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∫
D
ϕ(Ā+ Π0α) dx

∣∣∣∣
=
∣∣∣∣λ0

∫
D
ϕ(Π0α) dx+ c(u)

∫
D
α(j − λ0α) dx−

∫
D

(−∆ϕ)α
∣∣∣∣

=
∣∣∣∣λ0

∫
D
ϕ(Π0α) dx+ c(u)

∫
D
α(j − λ0α) dx

−λ0

∫
D
ϕ(Π0α) dx−

∫
D

(−∆ϕ)(Π⊥0 α) dx
∣∣∣∣

6 |c(u)|
∫
D
α(j − λ0α) dx+

∣∣∣∣∫D∇ϕ · ∇(Π⊥0 α) dx
∣∣∣∣

6 |c(u)|
∫
D
α(j − λ0α) dx+ 1

2

∫
D
|∇ϕ|2 dx+ 1

2

∫
D
|∇(Π⊥0 α)|2 dx

6 1
2

∫
D

(−∆ϕ)ϕ dx+ 1
2
(1− c(u)2)

∫
D
α(j − λ0α) dx

[
λ1 + 2|c(u)|(λ1 − λ0)
(λ1 − λ0)(1− c(u)2)

]
6 max

(
1,
λ1 + 2|c(u)|(λ1 − λ0)
(λ1 − λ0)(1− c(u)2)

)
L(u). (B 8)

Furthermore, the Poincaré-like inequality

(λ1 − λ0)
∫
D
|(Π⊥0 α)|2 dx 6

∫
D
α(j − λ0α) dx

implies ∫
D

(Π0A)2 dx = 2I2(u)−
∫
D

(Π⊥0 A)2 dx = 2I2(u)−
∫
D

(Π⊥0 α)2 dx

> 2I2(u)− 1
λ1 − λ0

∫
D
α(j − λ0α) dx

> 2I2(u)
(

1− 1
(λ1 − λ0)(1− c(u)2)

L̂(u)
)
.

To analyse this last expression we use Q(u) = L̂(u) + λ0c(u)2 and Q(u(t)) 6 Q(u(0)),
for all t > 0 (see lemma 6.3).

(1) If λ0 > λ1 − λ0, we have

(λ1 − λ0)(1− c(u)2)− L̂(u) = (λ1 − λ0)−Q(u) + c(u)2(2λ0 − λ1)
> (λ1 − λ0)−Q(u(0)).

(2) If λ0 6 λ1 − λ0, we have

(λ1 − λ0)(1− c(u)2)− L̂(u) =
λ1 − λ0

λ0
(λ0 −Q(u)) +

λ1 − 2λ0

λ0
L̂(u)

> λ1 − λ0

λ0
(λ0 −Q(u(0))).

To capture both situations, we define

F (u) =


(λ1 − λ0)−Q(u), if λ0 > λ1 − λ0,

λ1 − λ0

λ0
(λ0 −Q(u)), if λ0 6 λ1 − λ0.
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then F (u(0)) > 0 by the hypothesis of the theorem and we can write∫
D

(Π0A)2 dx > 2I2(u)
F (u(0))

(λ1 − λ0)(1− c(u)2)
. (B 9)

Substitution of the estimates (B 9) and (B 8) into (B 7) gives

2λ2
0F (u(0))

(λ1 − λ0)(1− c(u)2)
I2(u)

∫
D

(Π0ϕ)2 dx

6 max
(

1,
(λ1 + 2|c(u)|(λ1 − λ0))2

(λ1 − λ0)2(1− c(u)2)2

)
(L(u))2.

Using that 0 6 |c(u)| < 1, we get∫
D

(Π0ϕ)2 dx 6 (L̂(u))2I2(u)
2λ2

0(1− c(u)2)F (u(0))
max

(
λ1 − λ0,

(3λ1 − 2λ0)2

λ1 − λ0

)
.

Substitution of this estimate in (B 6) gives

d
dt
L̂(u(t)) 6 −2(λ1 − λ0)ηL̂(u) + η

2
1− c(u)2 L̂(u)2

+(λ1 + 3λ0)(ν − η)
c(u)2

2(1− c(u)2)
L̂(u)

+
λ1η − λ0ν

2λ0(1− c(u)2)F (u(0))
max

(
λ1 − λ0,

(3λ1 − 2λ0)2

λ1 − λ0

)
(L̂(u))2. (B 10)

Appendix C. The dissipation coefficient of the RMHD equations

In this appendix we will calculate β(ū) and f(ū) for the dissipative RMHD equa-
tion. In the case of the dissipative RMHD equation, we have S(ū) = E⊥0 × E⊥0 . By
definition L(u) = H(u) + c(u)I1(u)− (1− c(u)2)λ0I2(u), with

c(u) = − I1(u)
2λ0I2(u)

,

so we get

DL(u) = DH(u) + c(u)DI1(u)− (1− c(u)2)λ0DI2(u)
and

Dc(u) = − 1
2λ0I2(u)

[DI1(u) + 2λ0c(u)DI2(u)].

Both DI1(ū) and DI2(ū) are elements of E0×E0, thus 〈Dc(ū), δu〉 = 0, if δu ∈ S(ū).
Thus for any δu,∆u, we have

〈D2L(ū)δu,∆u〉 = 〈(D2H(ū) + c(ū)D2I1(ū)− (1− c(ū)2)λ0D
2I2((ū))δu,∆u〉

+(〈DI1(ū), δu〉+ 2c(ū)λ0〈DI2(ū), δu〉)〈Dc(ū),∆u〉
= 〈(D2H(ū) + c(ū)D2I1(ū)− (1− c(ū)2)λ0D

2I2(ū)))δu,∆u〉
+2λ0I2(ū)〈Dc(ū), δu〉〈Dc(ū),∆u〉.

Hence if either δu ∈ S or ∆u ∈ S, we have

〈D2L(ū)δu,∆u〉 = 〈(D2H(ū)+ c(ū)D2I1(ū)− (1− c(ū)2)λ0D
2I2(u)))δu,∆u〉. (C 1)
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Using (C 1) and writing δu = (δω, δA) = (−∆(δψ), δA) ∈ S(ū), we get

〈D2L(ū)δu, δu〉
=
∫
D

(δωδψ + δAδJ) dx+ 2c(ū)
∫
D
δωδAdx− (1− c(ū)2)λ0

∫
D

(δA)2 dx

=
∫
D

(δω + c(ū)δJ)(δψ + c(ū)δA) dx+ (1− c(ū)2)
∫
D
δA(δJ − λ0δA) dx.

Since P (u) = (ν∆ω, η∆A), we have DP (ū) · δu = (ν∆δω, η∆δA) so that, using the
boundary conditions BC2 in the integration by parts

ν

∫
D

∆δωδA = ν

∫
D
δωδJ,

the identity (C 1) gives

〈D2L(ū)δu,DP (ū)δu〉
= −ν

∫
D

(δω)2 dx− η
∫
D

(δJ)2 dx− c(ū)(η + ν)
∫
D
δωδJ dx

+(1− c(ū)2)λ0η

∫
D
δAδJ dx

= −1
2
(ν − η)

∫
D

(δω)2 dx− 1
2
(ν + η)

∫
D

(δω + c(ū)δJ)2 dx

+1
2
c(ū)2(ν − η)

∫
D
δJ2 dx− (1− c(ū)2)η

∫
D
δJ(δJ − λ0δA) dx.

From the estimate∫
D

(δω + c(ū)δJ)2 dx > λ1

∫
D

(δω + c(ū)δJ)(δψ + cδA) dx

for δω + c(ū)δJ ∈ E⊥0 and omitting the first negative term on the right-hand side of
the previous inequality we get

〈D2L(ū)δu,DP (ū)δu〉 6 −1
2
λ1(η + ν)

∫
D

(δω + cδJ)(δψ + cδA) dx

−[(1− c(ū)2)η − 1
2c(ū)2(ν − η)]

∫
D
δJ(δJ − λ0δA) dx

+1
2
c(ū)2(ν − η)λ0

∫
D
δJδA dx. (C 2)

Since δA, δJ ∈ E⊥0 we have the estimates∫
D
δJ(δJ − λ0δA) dx > λ1

∫
D
δA(δJ − λ0δA) dx,

and ∫
D
δAδJ dx > λ1

∫
D
δA2 dx,

the latter being equivalent to∫
D
δAδJ dx 6 λ1

λ1 − λ0

∫
D
δA(δJ − λ0δA) dx.

Requiring
(1− c(ū)2)η − 1

2c(ū)2(ν − η) > 0, (C 3)
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we get from (C 2)

〈D2L(ū)δu,DP (ū)δu〉 6 −1
2λ1(η + ν)

∫
D

(δω + cδJ)(δψ + cδA) dx

−[(1− c(ū)2)η − 1
2c(ū)2(ν − η)]λ1

∫
D
δA(δJ − λ0δA) dx

+1
2
c(ū)2(ν − η)

λ0λ1

λ1 − λ0

∫
D
δA(δJ − λ0δA) dx

= −1
2
λ1(η + ν)

∫
D

(δω + c(ū)δJ)(δψ + c(ū)δA) dx

− λ1

2(1− c(ū)2)

[
2η − c(ū)2

λ1 − λ0
((λ1ν − λ0η) + (λ1 − λ0)η)

]
×(1− c(ū)2)

∫
D
δA(δJ − λ0δA) dx. (C 4)

If, in addition,

2η − c(ū)2

λ1 − λ0
((λ1ν − λ0η) + (λ1 − λ0)η) > 0, (C 5)

an inequality which implies (C 3), we get
〈D2L(ū)δu,DP (ū)δu〉 6 −1

2λ1〈D2L(ū)δu, δu〉

×min
(
ν + η,

1
1− c(ū)2

[
2η − c(ū)2

λ1 − λ0
((λ1ν − λ0η) + (λ1 − λ0)η)

])
. (C 6)

Next we analyse under what conditions inequality (C 5) is valid. Recall from §5,
lemma 6.4, the estimate (6.12):

c(u(t))2 6 (L̂(u(0))/λ0 + c(u(0))2)C(u(0))e−2(ν−η)λ0t,

valid for either boundary conditions BC1 or BC2, provided that u(0) satisfies
Q(u(0)) < min(λ0, λ1 − λ0) and ν < η < λ1η/λ0. The constant C(u(0)) is large,
only if Q(u(0)) is near (λ1 − λ0), and not if u(0) is small. We now place ourselves in
these conditions and conclude hence that c(ū) → 0 as t → ∞. Thus, there is some
T1 > 0 such that for all t > T1 inequality (C 5) holds which then means that (C 4) is
valid. Moreover, since ν > η it follows that there is a T2 > 0 such that for all t > T2
we have

ν >
1 + c(ū)2

1− c(ū)2 η,

which in turn implies that

ν + η >
1

1− c(ū)2

[
2η − c(ū)2

λ1 − λ0
((λ1ν − λ0η) + (λ1 − λ0)η)

]
and so for t > max(T1, T2), the inequality (C 6) implies

〈D2L(ū)δu,DP (ū)δu〉 6 β(ū)1
2〈D2L(ū)δu, δu〉, (C 7)

where

β(ū) = − λ1

1− c(ū)2

[
2η − c(ū)2

λ1 − λ0
((λ1ν − λ0η) + (λ1 − λ0)η)

]
. (C 8)

From (C 8) we see that
β = lim

t→∞
β(ū) = −2ηλ1. (C 9)
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Since F (u) = I2(u), we conclude that

f(ū) =
〈DI2(ū), P (ū)〉

I2(ū)
= −2ηλ0 = f.
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