111 research outputs found

    Popular and Populist Shakespearean Transcreations in Central and Eastern Europe

    Get PDF
    The article discusses the variety of ways in which the terms “popular” or “populist” could be associated with postwar Shakespearean transcreations in the Central and Eastern European region, pointing out how performers and adaptors challenged the canonical, highbrow status of Shakespeare and used his oeuvre as raw material in experimental forms and genres. Following a discussion on the variety of socio-historical contexts which inspired noteworthy popular and/or populist reworkings in several Central and Eastern European countries, the article takes a more in-depth look at a few specific comic genres, particularly the burlesque and the cabaret in a theoretical framework, and concludes by examining post-1989 experimental theatre practices

    Enhancement of Tumour-Specific Immune Responses In Vivo by ‘MHC Loading-Enhancer’ (MLE)

    Get PDF
    BACKGROUND:Class II MHC molecules (MHC II) are cell surface receptors displaying short protein fragments for the surveillance by CD4+ T cells. Antigens therefore have to be loaded onto this receptor in order to induce productive immune responses. On the cell surface, most MHC II molecules are either occupied by ligands or their binding cleft has been blocked by the acquisition of a non-receptive state. Direct loading with antigens, as required during peptide vaccinations, is therefore hindered. PRINCIPAL FINDINGS:Here we show, that the in vivo response of CD4+ T cells can be improved, when the antigens are administered together with 'MHC-loading enhancer' (MLE). MLE are small catalytic compounds able to open up the MHC binding site by triggering ligand-release and stabilizing the receptive state. Their enhancing effect on the immune response was demonstrated here with an antigen from the influenza virus and tumour associated antigens (TAA) derived from the NY-ESO-1 protein. The application of these antigens in combination with adamantane ethanol (AdEtOH), an MLE compound active on human HLA-DR molecules, significantly increased the frequency of antigen-specific CD4+ T cells in mice transgenic for the human MHC II molecule. Notably, the effect was evident only with the MLE-susceptible HLA-DR molecule and not with murine MHC II molecules non-susceptible for the catalytic effect of the MLE. CONCLUSION:MLE can specifically increase the potency of a vaccine by facilitating the efficient transfer of the antigen onto the MHC molecule. They may therefore open a new way to improve vaccination efficacy and tumour-immunotherapy

    Induction of effective and antigen-specific antitumour immunity by a liposomal ErbB2/HER2 peptide-based vaccination construct

    Get PDF
    Efficient delivery of tumour-associated antigens to appropriate cellular compartments of antigen-presenting cells is of prime importance for the induction of potent, cell-mediated antitumour immune responses. We have designed novel multivalent liposomal constructs that co-deliver the p63–71 cytotoxic T Lymphocyte epitope derived from human ErbB2 (HER2), and HA307–319, a T-helper (Th) epitope derived from influenza haemagglutinin. Both peptides were conjugated to the surface of liposomes via a Pam3CSS anchor, a synthetic lipopeptide with potent adjuvant activity. In a murine model system, vaccination with these constructs completely protected BALB/c mice from subsequent s.c. challenge with ErbB2-expressing, but not ErbB2-negative, murine renal carcinoma (Renca) cells, indicating the induction of potent, antigen-specific immune responses. I.v. re-challenge of tumour-free animals 2 months after the first tumour cell inoculation did not result in the formation of lung tumour nodules, suggesting that long-lasting, systemic immunity had been induced. While still protecting the majority of vaccinated mice, a liposomal construct lacking the Th epitope was less effective than the diepitope construct, also correlating with a lower number of CD8+ IFN-γ+ T-cells identified upon ex vivo peptide restimulation of splenocytes from vaccinated animals. Importantly, in a therapeutic setting treatment with the liposomal vaccines resulted in cures in the majority of tumour-bearing mice and delayed tumour growth in the remaining ones. Our results demonstrate that liposomal constructs which combine Tc and Th peptide antigens and lipopeptide adjuvants can induce efficient, antigen-specific antitumour immunity, and represent promising synthetic delivery systems for the design of specific antitumour vaccines

    Rationally Designed Interfacial Peptides Are Efficient In Vitro Inhibitors of HIV-1 Capsid Assembly with Antiviral Activity

    Get PDF
    Virus capsid assembly constitutes an attractive target for the development of antiviral therapies; a few experimental inhibitors of this process for HIV-1 and other viruses have been identified by screening compounds or by selection from chemical libraries. As a different, novel approach we have undertaken the rational design of peptides that could act as competitive assembly inhibitors by mimicking capsid structural elements involved in intersubunit interfaces. Several discrete interfaces involved in formation of the mature HIV-1 capsid through polymerization of the capsid protein CA were targeted. We had previously designed a peptide, CAC1, that represents CA helix 9 (a major part of the dimerization interface) and binds the CA C-terminal domain in solution. Here we have mapped the binding site of CAC1, and shown that it substantially overlaps with the CA dimerization interface. We have also rationally modified CAC1 to increase its solubility and CA-binding affinity, and designed four additional peptides that represent CA helical segments involved in other CA interfaces. We found that peptides CAC1, its derivative CAC1M, and H8 (representing CA helix 8) were able to efficiently inhibit the in vitro assembly of the mature HIV-1 capsid. Cocktails of several peptides, including CAC1 or CAC1M plus H8 or CAI (a previously discovered inhibitor of CA polymerization), or CAC1M+H8+CAI, also abolished capsid assembly, even when every peptide was used at lower, sub-inhibitory doses. To provide a preliminary proof that these designed capsid assembly inhibitors could eventually serve as lead compounds for development of anti-HIV-1 agents, they were transported into cultured cells using a cell-penetrating peptide, and tested for antiviral activity. Peptide cocktails that drastically inhibited capsid assembly in vitro were also able to efficiently inhibit HIV-1 infection ex vivo. This study validates a novel, entirely rational approach for the design of capsid assembly interfacial inhibitors that show antiviral activity

    TLR1/2 Activation during Heterologous Prime-Boost Vaccination (DNA-MVA) Enhances CD8+ T Cell Responses Providing Protection against Leishmania (Viannia)

    Get PDF
    Leishmania (Viannia) are the predominant agents of leishmaniasis in Latin America. Given the fact that leishmaniasis is a zoonosis, eradication is unlikely; a vaccine could provide effective prevention of disease. However, these parasites present a challenge and we do not fully understand what elements of the host immune defense prevent disease. We examined the ability of vaccination to protect against L. (Viannia) infection using the highly immunogenic heterologous prime-boost (DNA-modified vaccinia virus) modality and a single Leishmania antigen (TRYP). Although this mode of vaccination can induce protection against other leishmaniases (cutaneous, visceral), no protection was observed against L. (V.) panamensis. However, we found that if the vaccination was modified and the innate immune response was activated through Toll-like receptor1/2(TLR1/2) during the DNA priming, vaccinated mice were protected. Protection was dependent on CD8 T cells. Vaccinated mice had higher CD8 T cell responses and decreased levels of cytokines known to promote infection. Given the long-term persistence of CD8 T cell memory, these findings are encouraging for vaccine development. Further, these results suggest that modulation of TLR1/2 signaling could improve the efficacy of DNA-based vaccines, especially where CD8 T cell activation is critical, thereby contributing to effective and affordable anti parasitic vaccines

    MHC-I peptides get out of the groove and enable a novel mechanism of HIV-1 escape

    Get PDF
    Major histocompatibility complex class I (MHC-I) molecules play a crucial role in immunity by capturing peptides for presentation to T cells and natural killer (NK) cells. The peptide termini are tethered within the MHC-I antigen-binding groove, but it is unknown whether other presentation modes occur. Here we show that 20% of the HLA-B*57:01 peptide repertoire comprises N-terminally extended sets characterized by a common motif at position 1 (P1) to P2. Structures of HLA-B*57:01 presenting N-terminally extended peptides, including the immunodominant HIV-1 Gag epitope TW10 (TSTLQEQIGW), showed that the N terminus protrudes from the peptide-binding groove. The common escape mutant TSNLQEQIGW bound HLA-B*57:01 canonically, adopting a dramatically different conformation than the TW10 peptide. This affected recognition by killer cell immunoglobulin-like receptor (KIR) 3DL1 expressed on NK cells. We thus define a previously uncharacterized feature of the human leukocyte antigen class I (HLA-I) immunopeptidome that has implications for viral immune escape. We further suggest that recognition of the HLA-B*57:01-TW10 epitope is governed by a 'molecular tension' between the adaptive and innate immune systems

    API-MS is a powerful new tool for on-line peptide and protein analysis with HPLC and CZE

    No full text

    Minimal structure of lipopeptides for in vivo priming of cytotoxic T-lymphocytes

    No full text

    Evolution of the properties of helium nanobubbles during in situ annealing probed by spectrum imaging in the transmission electron microscope

    Get PDF
    International audienceThe evolution of nanometric helium bubbles in silicon has been investigated using spatially resolved electron energy-loss spectroscopy during in situ annealing in the transmission electron microscope. This approach allows the simultaneous determination of both the morphology and the helium density in the bubbles at each step of the annealing. Structural modification and helium emission from bubbles of various diameters in the range 7.5 to 20 nm and various aspect ratios of 1.1 to 1.9 have been studied. We clearly show that helium emission takes place at temperatures where bubble migration had hardly started. At higher temperatures, the migration (and coalescence) of voids is clearly revealed. For helium density lower than 150 He nm −3 , the Cerofolini's model taking into account the thermodynamical properties of an ultradense fluid reproduces well the helium emission from the bubbles, leading to an activation energy of 1.8 eV. When bubbles exhibit a higher initial helium density, the Cerofolini's model fails to reproduce the helium emission kinetics. We ascribe this to the fact that helium may be in the solid phase and we propose a tentative model to take into account the properties of the solid

    Identification and Quantification of a Naturally Presented Peptide As Recognized By Cytotoxic Lymphocytes-t Specific for An Immunogenic Tumor Variant

    No full text
    The target antigen recognized by H-2K(d)-restricted cytotoxic T lymphocytes (CTLs) specific for a mutagen-induced antigen on DBA/2-derived tumor P815 was identified as the product of a normal cellular gene encompassing a point mutation. Using synthetic peptides, the epitope recognized by these CTLs was narrowed down to be contained within the undecamer KYQAVTTTLEE, incorporating the point mutation. The allele-specific peptide motif for H-2K(d) molecules allowed us to predict the peptide naturally presented by the tumor cells to be the nonamer KYQAVTTTL. Isolation of the natural tum--specific peptide from P198.3 tumor cells and biochemical comparison with the synthetic nonamer confirmed the prediction. This natural nonapeptide is represented by approximately 1 00 copies per tumor cell
    corecore