92 research outputs found
The Y-chromosome C3* star-cluster attributed to Genghis Khan\u27s descendants is present at high frequency in the Kerey clan from Kazakhstan
In order to verify the possibility that the Y-chromosome C3* star-cluster attributed to Genghis Khan and his patrilineal descendants is relatively frequent in the Kereys, who are the dominant clan in Kazakhstan and in Central Asia as a whole, polymorphism of the Y-chromosome was studied in Kazakhs, represented mostly by members of the Kerey clan. The Kereys showed the highest frequency (76.5%) of individuals carrying the Y-chromosome variant known as C3* star-cluster ascribed to the descendants of Genghis Khan. C3* star-cluster haplotypes were found in two sub-clans, Abakh-Kereys and Ashmaily-Kereys, diverged about 20-22 generations ago according to the historical data. Median network of the Kerey star-cluster haplotypes at 17 STR loci displays a bipartite structure, with two subclusters defined by the only difference at DYS448 locus. It is noteworthy that there is a strong correspondence of these subclusters with the Kerey sub-clans affiliation. The data obtained suggest that the Kerey clan appears to be the largest known clan in the world descending from a common Y-chromosome ancestor. Possible ways of Genghis Khan‟s relation to the Kereys are discussed
The Peopling of Europe from the Mitochondrial Haplogroup U5 Perspective
It is generally accepted that the most ancient European mitochondrial haplogroup, U5, has evolved essentially in Europe. To resolve the phylogeny of this haplogroup, we completely sequenced 113 mitochondrial genomes (79 U5a and 34 U5b) of central and eastern Europeans (Czechs, Slovaks, Poles, Russians and Belorussians), and reconstructed a detailed phylogenetic tree, that incorporates previously published data. Molecular dating suggests that the coalescence time estimate for the U5 is ∼25–30 thousand years (ky), and ∼16–20 and ∼20–24 ky for its subhaplogroups U5a and U5b, respectively. Phylogeographic analysis reveals that expansions of U5 subclusters started earlier in central and southern Europe, than in eastern Europe. In addition, during the Last Glacial Maximum central Europe (probably, the Carpathian Basin) apparently represented the area of intermingling between human flows from refugial zones in the Balkans, the Mediterranean coastline and the Pyrenees. Age estimations amounting for many U5 subclusters in eastern Europeans to ∼15 ky ago and less are consistent with the view that during the Ice Age eastern Europe was an inhospitable place for modern humans
Weryfikacja markerów insercyjno-delecyjnych (InDels) i mikrosatelitarnych (STR) jako narzędzi pomocniczych do wnioskowania o pochodzeniu populacji słowiańskiej
Genetic markers for the prediction of biogeographical ancestry have proved to be effective tools for law enforcement agencies for many years now. In this study, we attempted to assess the potential of insertion-deletion markers (InDel) and microsatellites (STRs) as subsidiary polymorphisms for inference of Slavic population ancestry. For that purpose, we genotyped Slavic-speaking populations samples from Belarus, the Czech Republic, Poland, Serbia, Ukraine and Russia in 46 InDels and 15 STRs by PCR and capillary electrophoresis and analyzed for between-population differentiation with the use of distance-based methods (FST, principal component analysis and multidimensional scaling).Additionally, we studied a sample from a Polish individual of well-documented genealogy whose biogeographic ancestry had previously been inferred by commercial genomic services using autosomal single nucleotide polymorphisms (SNPs), mitochondrial DNA and Y-SNP markers. For comparative purposes, we used genotype data collected in the “forInDel” browser and allele frequencies from previously published papers. The results obtained for InDels and STRs show that the Slavic populations constitute a genetically homogeneous group, with the exception of the Czechs differing clearly from the other tested populations. The analysis of the known Polish sample in the Snipper application proves the usefulness of the InDel markers on the continental level only. Conversely, microsatellites not only improve prediction, but are also informative if considered as an independent set of ancestry markers.Markery genetyczne do przewidywania pochodzenia biogeograficznego od wielu lat okazują się skutecznymi narzędziami dla organów ścigania. W tym badaniu podjęliśmy próbę oceny potencjału markerów insercyjno-delecyjnych
(InDel) i mikrosatelitarnych (STR) jako pomocniczych polimorfizmów do wnioskowania o pochodzeniu populacji
słowiańskiej. W tym celu genotypowaliśmy próbki populacji słowiańskojęzycznych z Białorusi, Czech, Polski, Serbii,
Ukrainy i Rosji w w zakresie 46 markerów InDel oraz 15 loci STR za pomocą PCR i elektroforezy kapilarnej oraz
analizowaliśmy pod kątem różnicowania między populacjami za pomocą metod bazujących na dystansach genetycznych (FST, analiza głównych składowych i skalowanie wielowymiarowe). Dodatkowo zbadaliśmy próbkę mężczyzny
z populacji polskiej o dobrze udokumentowanej genealogii, którego pochodzenie biogeograficzne zostało wcześniej
ustalone przez komercyjne usługi genomiczne przy użyciu autosomalnych polimorfizmów pojedynczych nukleotydów (SNP), mitochondrialnego DNA i markerów Y-SNP. Do celów porównawczych wykorzystaliśmy dane genotypowe zebrane w przeglądarce „forInDel” i częstości alleli z wcześniej opublikowanych artykułów. Uzyskane wyniki
dla InDels i STR wskazują, że populacje słowiańskie stanowią grupę genetycznie jednorodną, z wyjątkiem Czechów
wyraźnie różniących się od pozostałych badanych populacji. Analiza znanej polskiej próbki w aplikacji Snipper
dowodzi przydatności markerów InDel jedynie na poziomie kontynentalnym. Z kolei, mikrosatelity nie tylko poprawiają wyniki predykcji, ale są informatywne jako niezależny zestaw markerów pochodzenia biogeograficznego
Complete Mitochondrial Genome and Phylogeny of Pleistocene MammothMammuthus primigenius
Phylogenetic relationships between the extinct woolly mammoth(Mammuthus primigenius), and the Asian(Elephas maximus) and African savanna(Loxodonta africana) elephants remain unresolved. Here, we report the sequence of the complete mitochondrial genome (16,842 base pairs) of a woolly mammoth extracted from permafrost-preserved remains from the Pleistocene epoch—the oldest mitochondrial genome sequence determined to date. We demonstrate that well-preserved mitochondrial genome fragments, as long as ~1,600–1700 base pairs, can be retrieved from pre-Holocene remains of an extinct species. Phylogenetic reconstruction of the Elephantinae clade suggests thatM. primigenius andE. maximus are sister species that diverged soon after their common ancestor split from theL. africana lineage. Low nucleotide diversity found between independently determined mitochondrial genomic sequences of woolly mammoths separated geographically and in time suggests that north-eastern Siberia was occupied by a relatively homogeneous population ofM. primigenius throughout the late Pleistocene
Origin and Post-Glacial Dispersal of Mitochondrial DNA Haplogroups C and D in Northern Asia
More than a half of the northern Asian pool of human mitochondrial DNA (mtDNA) is fragmented into a number of subclades of haplogroups C and D, two of the most frequent haplogroups throughout northern, eastern, central Asia and America. While there has been considerable recent progress in studying mitochondrial variation in eastern Asia and America at the complete genome resolution, little comparable data is available for regions such as southern Siberia – the area where most of northern Asian haplogroups, including C and D, likely diversified. This gap in our knowledge causes a serious barrier for progress in understanding the demographic pre-history of northern Eurasia in general. Here we describe the phylogeography of haplogroups C and D in the populations of northern and eastern Asia. We have analyzed 770 samples from haplogroups C and D (174 and 596, respectively) at high resolution, including 182 novel complete mtDNA sequences representing haplogroups C and D (83 and 99, respectively). The present-day variation of haplogroups C and D suggests that these mtDNA clades expanded before the Last Glacial Maximum (LGM), with their oldest lineages being present in the eastern Asia. Unlike in eastern Asia, most of the northern Asian variants of haplogroups C and D began the expansion after the LGM, thus pointing to post-glacial re-colonization of northern Asia. Our results show that both haplogroups were involved in migrations, from eastern Asia and southern Siberia to eastern and northeastern Europe, likely during the middle Holocene
Mitochondrial haplogroup N1a phylogeography, with implication to the origin of European farmers
<p>Abstract</p> <p>Background</p> <p>Tracing the genetic origin of central European farmer N1a lineages can provide a unique opportunity to assess the patterns of the farming technology spread into central Europe in the human prehistory. Here, we have chosen twelve N1a samples from modern populations which are most similar with the farmer N1a types and performed the complete mitochondrial DNA genome sequencing analysis. To assess the genetic and phylogeographic relationship, we performed a detailed survey of modern published N1a types from Eurasian and African populations.</p> <p>Results</p> <p>The geographic origin and expansion of farmer lineages related N1a subclades have been deduced from combined analysis of 19 complete sequences with 166 N1a haplotypes. The phylogeographic analysis revealed that the central European farmer lineages have originated from different sources: from eastern Europe, local central Europe, and from the Near East via southern Europe.</p> <p>Conclusions</p> <p>The results obtained emphasize that the arrival of central European farmer lineages did not occur via a single demic diffusion event from the Near East at the onset of the Neolithic spread of agriculture into Europe. Indeed these results indicate that the Neolithic transition process was more complex in central Europe and possibly the farmer N1a lineages were a result of a 'leapfrog' colonization process.</p
A Selective Sweep on a Deleterious Mutation in CPT1A in Arctic Populations.
Arctic populations live in an environment characterized by extreme cold and the absence of plant foods for much of the year and are likely to have undergone genetic adaptations to these environmental conditions in the time they have been living there. Genome-wide selection scans based on genotype data from native Siberians have previously highlighted a 3 Mb chromosome 11 region containing 79 protein-coding genes as the strongest candidates for positive selection in Northeast Siberians. However, it was not possible to determine which of the genes might be driving the selection signal. Here, using whole-genome high-coverage sequence data, we identified the most likely causative variant as a nonsynonymous G>A transition (rs80356779; c.1436C>T [p.Pro479Leu] on the reverse strand) in CPT1A, a key regulator of mitochondrial long-chain fatty-acid oxidation. Remarkably, the derived allele is associated with hypoketotic hypoglycemia and high infant mortality yet occurs at high frequency in Canadian and Greenland Inuits and was also found at 68% frequency in our Northeast Siberian sample. We provide evidence of one of the strongest selective sweeps reported in humans; this sweep has driven this variant to high frequency in circum-Arctic populations within the last 6-23 ka despite associated deleterious consequences, possibly as a result of the selective advantage it originally provided to either a high-fat diet or a cold environment.This research was supported by ERC Starting Investigator grant (FP7 - 261213) to
T.K. http://erc.europa.eu/. CTS, YX, QA and MS were supported by the Wellcome Trust
(098051). TA was supported by The Wellcome Trust (WT100066MA). M.M and R.V. were
supported by EU ERDF Centre of Excellence in Genomics to EBC; T.K, M.M and R.V. by
Estonian Institutional Research grant (IUT24-1), and M.M by Estonian Science Foundation
(grant 8973).This is the accepted manuscript. The final version is available from Cell/Elsevier at http://www.cell.com/ajhg/abstract/S0002-9297%2814%2900422-4
A Machine-Learning-Based Approach to Prediction of Biogeographic Ancestry within Europe
Data obtained with the use of massive parallel sequencing (MPS) can be valuable in population genetics studies. In particular, such data harbor the potential for distinguishing samples from different populations, especially from those coming from adjacent populations of common origin. Machine learning (ML) techniques seem to be especially well suited for analyzing large datasets obtained using MPS. The Slavic populations constitute about a third of the population of Europe and inhabit a large area of the continent, while being relatively closely related in population genetics terms. In this proof-of-concept study, various ML techniques were used to classify DNA samples from Slavic and non-Slavic individuals. The primary objective of this study was to empirically evaluate the feasibility of discerning the genetic provenance of individuals of Slavic descent who exhibit genetic similarity, with the overarching goal of categorizing DNA specimens derived from diverse Slavic population representatives. Raw sequencing data were pre-processed, to obtain a 1200 character-long binary vector. A total of three classifiers were used—Random Forest, Support Vector Machine (SVM), and XGBoost. The most-promising results were obtained using SVM with a linear kernel, with 99.9% accuracy and F1-scores of 0.9846–1.000 for all classes
Selective sweep on human amylase genes postdates the split with Neanderthals
Humans have more copies of amylase genes than other primates. It is still poorly understood, however, when the copy number expansion occurred and whether its spread was enhanced by selection. Here we assess amylase copy numbers in a global sample of 480 high coverage genomes and find that regions flanking the amylase locus show notable depression of genetic diversity both in African and non-African populations. Analysis of genetic variation in these regions supports the model of an early selective sweep in the human lineage after the split of humans from Neanderthals which led to the fixation of multiple copies of AMY1 in place of a single copy. We find evidence of multiple secondary losses of copy number with the highest frequency (52%) of a deletion of AMY2A and associated low copy number of AMY1 in Northeast Siberian populations whose diet has been low in starch content
- …