1,585 research outputs found

    A Comparative Study on the Effects of Size and Sources or Traceability on the Price of Identified Fish Species Sold at Muñoz Market, Quezon City

    Get PDF
    The diversity of fish in markets is constantly dynamic under several factors. The study aims to find the correlation of these factors and their effects with the selection of fishes found in Muñoz Market. This study adopted the research design of the two previous studies to ensure consistency in assessing the gathered data. The researchers utilized premade questionnaires that were given to the vendors working inside Muñoz Market. In analyzing the data, the researchers applied Pearson’s correlation coefficient to assess the factors’ correlation between them. The results showed an increase in the number of identified species and the price and size range of the fish placed in the market. This implies that the domain of the market is constantly increasing. The market is more diverse than in the past, where new species are introduced to the market and made accessible to the general public at Muñoz Market

    Enhanced CO resistance of Pd/SSZ-13 for passive NOx adsorption

    Get PDF
    Passive NOx adsorption (PNA) is a novel technology to control NOx emissions during cold start. However, the recent generation of PNA material, Pd/zeolite, suffers from major degradation under high CO concentrations. In this work, we developed a novel form of Pd/SSZ-13 by using a freeze-drying process after incipient wetness impregnation. This Pd/SSZ-13 showed a better stability than the sample synthesized by the common process. Several characterization measurements were conducted and it was found that the Pd sites on the freeze-dried sample were more resistant towards CO-induced agglomeration. By combing in-situ characterization and kinetic modeling, we found that the freeze-dried Pd/SSZ-13 had more ion-exchanged Pd sites, which provided greater resistance towards the CO-induced Ostwald ripening process, and consequently suppressed the sintering behavior under a high CO concentration. This material offers a potentially improved stability of PNAs under extremely high CO concentration pulses from incomplete diesel combustion during engine cold start

    Kinetic modeling of CO assisted passive NOx adsorption on Pd/SSZ-13

    Get PDF
    Passive NOx adsorption (PNA) has been recently developed as a promising technology for controlling the NOx emissions during the cold start period. In this work, we illustrate a CO-assisted mechanism by combining experimental and kinetic modeling studies. Pd/SSZ-13 has been synthesized, characterized and evaluated as a PNA in low-temperature NOx adsorption and temperature program desorption cycles, to represent multiple cold start periods. The gas compositions were also systemically changed, where both the effect of varying NOx and CO feed was evaluated in the presence of high water and oxygen contents. A kinetic model was developed to simulate the profiles of NO and NO2, including three initial Pd sites (Z-Pd(II)Z-, Z-[Pd(II)OH]+ and PdO). It is concluded from XPS and in situ DRIFTS experiments, flow reactor measurements and modelling observations that CO reduces Pd(II) species to Pd(I)/Pd(0) species, which increases the stability of the stored NOx species, resulting in a release above the urea dosing temperature. The model could well describe the experimental features, including the effect of CO. In addition, the model was used for full-scale catalytic converter simulations

    Insight into CO induced degradation mode of Pd/SSZ-13 in NOx adsorption and release: Experiment and modeling

    Get PDF
    Passive NOx adsorption (PNA) on Pd zeolites is an important technique to remove NOx during the cold start of the engine. However, the stability of Pd zeolites under high concentrations of CO is still challenging in multiple cold starts of an engine. Herein, we illustrate the CO-induced degradation mechanism of Pd zeolite by combining experiments and kinetic models. Pd/SSZ-13 has been used in multicycle processes containing NOx adsorption at low temperature and temperature programmed desorption, which represents the PNA degradation in multiple cold start periods. A kinetic model was developed to describe the NOx storage and degradation behavior of Pd/SSZ-13. Both experimental and modelling observations suggested that two Pd sintering modes are occurring under high CO concentration (4000 ppm), namely Ostwald ripening and particle migration. Apart from the degradation behavior, this model is also adequate for describing multi-cycle NOx storage and release behavior under low CO concentration

    Chalcogenide Glass-on-Graphene Photonics

    Get PDF
    Two-dimensional (2-D) materials are of tremendous interest to integrated photonics given their singular optical characteristics spanning light emission, modulation, saturable absorption, and nonlinear optics. To harness their optical properties, these atomically thin materials are usually attached onto prefabricated devices via a transfer process. In this paper, we present a new route for 2-D material integration with planar photonics. Central to this approach is the use of chalcogenide glass, a multifunctional material which can be directly deposited and patterned on a wide variety of 2-D materials and can simultaneously function as the light guiding medium, a gate dielectric, and a passivation layer for 2-D materials. Besides claiming improved fabrication yield and throughput compared to the traditional transfer process, our technique also enables unconventional multilayer device geometries optimally designed for enhancing light-matter interactions in the 2-D layers. Capitalizing on this facile integration method, we demonstrate a series of high-performance glass-on-graphene devices including ultra-broadband on-chip polarizers, energy-efficient thermo-optic switches, as well as graphene-based mid-infrared (mid-IR) waveguide-integrated photodetectors and modulators

    Care during the third stage of labour: A postal survey of UK midwives and obstetricians

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are two approaches to care during the third stage of labour: Active management includes three components: administration of a prophylactic uterotonic drug, cord clamping and controlled cord traction. For physiological care, intervention occurs only if there is clinical need. Evidence to guide care during the third stage is limited and there is variation in recommendations which may contribute to differences in practice. This paper describes current UK practice during the third stage of labour.</p> <p>Methods</p> <p>A postal survey of 2230 fellows and members of the Royal College of Obstetricians and Gynaecologists (RCOG) and 2400 members of the Royal College of Midwives was undertaken. Respondents were asked about care during the third stage of labour, for vaginal and caesarean births and their views on the need for more evidence to guide care in the third stage. The data were analysed in Excel and presented as descriptive statistics.</p> <p>Results</p> <p>1189 (53%) fellows and members of the RCOG and 1702 (71%) midwives responded, of whom 926 (78%) and 1297 (76%) respectively had conducted or supervised births in the last year. 93% (863/926) of obstetricians and 73% (942/1297) of midwives report 'always or usually' using active management. 66% (611/926) of obstetricians and 33% (430/1297) of midwives give the uterotonic drug with delivery of the anterior shoulder; this was intramuscular Syntometrine<sup>® </sup>for 79% (728/926) and 86% (1118/1293) respectively. For term births, 74% (682/926) of obstetricians and 41% (526/1297) of midwives clamp the cord within 20 seconds, as do 57% (523/926) and 55% (707/1297) for preterm births. Controlled cord traction was used by 94% of both obstetricians and midwives. For caesarean births, intravenous oxytocin was the uterotonic used by 90% (837/926) of obstetricians; 79% (726/926) clamp the cord within 20 seconds for term births as do 63% (576/926) for preterm births.</p> <p>Physiological management was used 'always or usually' by 2% (21/926) of obstetricians and 9% (121/1297) of midwives. 81% (747/926) of obstetricians and 89% (1151/1297) of midwives thought more evidence from randomised trials was needed; the most popular question was when is best to clamp the cord.</p> <p>Conclusions</p> <p>Active management of the third stage of labour is widely used by both obstetricians and midwives in the UK. Syntometrine<sup>® </sup>is usually used for vaginal births and oxytocin for caesarean births; when this is given and when the cord is clamped varies.</p

    A Loss of Function Screen of Identified Genome-Wide Association Study Loci Reveals New Genes Controlling Hematopoiesis

    Get PDF
    The formation of mature cells by blood stem cells is very well understood at the cellular level and we know many of the key transcription factors that control fate decisions. However, many upstream signalling and downstream effector processes are only partially understood. Genome wide association studies (GWAS) have been particularly useful in providing new directions to dissect these pathways. A GWAS meta-analysis identified 68 genetic loci controlling platelet size and number. Only a quarter of those genes, however, are known regulators of hematopoiesis. To determine function of the remaining genes we performed a medium-throughput genetic screen in zebrafish using antisense morpholino oligonucleotides (MOs) to knock down protein expression, followed by histological analysis of selected genes using a wide panel of different hematopoietic markers. The information generated by the initial knockdown was used to profile phenotypes and to position candidate genes hierarchically in hematopoiesis. Further analysis of brd3a revealed its essential role in differentiation but not maintenance and survival of thrombocytes. Using the from-GWAS-to-function strategy we have not only identified a series of genes that represent novel regulators of thrombopoiesis and hematopoiesis, but this work also represents, to our knowledge, the first example of a functional genetic screening strategy that is a critical step toward obtaining biologically relevant functional data from GWA study for blood cell traits

    SPARC REport No. 7

    Full text link
    peer reviewedThe Montreal Protocol (MP) controls the production and consumption of carbon tetrachloride (CCl4 or CTC) and other ozone-depleting substances (ODSs) for emissive uses. CCl4 is a major ODS, accounting for about 12% of the globally averaged inorganic chlorine and bromine in the stratosphere, compared to 14% for CFC-12 in 2012. In spite of the MP controls, there are large ongoing emissions of CCl4 into the atmosphere. Estimates of emissions from various techniques ought to yield similar numbers. However, the recent WMO/UNEP Scientific Assessment of Ozone Depletion [WMO, 2014] estimated a 2007-2012 CCl4 bottom-up emission of 1-4 Gg/year (1-4 kilotonnes/year), based on country-by-country reports to UNEP, and a global top-down emissions estimate of 57 Gg/ year, based on atmospheric measurements. This 54 Gg/year difference has not been explained. In order to assess the current knowledge on global CCl4 sources and sinks, stakeholders from industrial, governmental, and the scientific communities came together at the “Solving the Mystery of Carbon Tetrachloride” workshop, which was held from 4-6 October 2015 at Empa in Dübendorf, Switzerland. During this workshop, several new findings were brought forward by the participants on CCl4 emissions and related science. • Anthropogenic production and consumption for feedstock and process agent uses (e.g., as approved solvents) are reported to UNEP under the MP. Based on these numbers, global bottom-up emissions of 3 (0-8) Gg/year are estimated for 2007-2013 in this report. This number is also reasonably consistent with this report’s new industry-based bottom-up estimate for fugitive emissions of 2 Gg/year. • By-product emissions from chloromethanes and perchloroethylene plants are newly proposed in this report as significant CCl4 sources, with global emissions estimated from these plants to be 13 Gg/year in 2014. • This report updates the anthropogenic CCl4 emissions estimation as a maximum of ~25 Gg/year. This number is derived by combining the above fugitive and by-product emissions (2 Gg/year and 13 Gg/year, respectively) with 10 Gg/year from legacy emissions plus potential unreported inadvertent emissions from other sources. • Ongoing atmospheric CCl4 measurements within global networks have been exploited for assessing regional emissions. In addition to existing emissions estimates from China and Australia, the workshop prompted research on emissions in the U.S. and Europe. The sum of these four regional emissions is estimated as 21±7.5a Gg/year, but this is not a complete global accounting. These regional top-down emissions estimates also show that most of the CCl4 emissions originate from chemical industrial regions, and are not linked to major population centres. • The total CCl4 lifetime is critical for calculating top-down global emissions. CCl4 is destroyed in the stratosphere, oceans, and soils, complicating the total lifetime estimate. The atmospheric lifetime with respect to stratospheric loss was recently revised to 44 (36-58) years, and remains unchanged in this report. New findings from additional measurement campaigns and reanalysis of physical parameters lead to changes in the ocean lifetime from 94 years to 210 (157-313) years, and in the soil lifetime from 195 years to 375 (288-536) years. • These revised lifetimes lead to an increase of the total lifetime from 26 years in WMO [2014] to 33 (28-41) years. Consequently, CCl4 is lost at a slower rate from the atmosphere. With this new total lifetime, the global top-down emissions calculation decreases from 57 (40-74) Gg/year in WMO [2014] to 40 (25-55) Gg/year. This estimate is relatively consistent with the independent gradient top-down emissions of 30 (25-35) Gg/year, based upon differences between atmospheric measurements of CCl4 in the Northern and Southern Hemispheres. In addition, this new total lifetime implies an upper limit of 3-4 Gg/year of natural emissions, based upon newly reported observations of old air in firn snow. These new CCl4 emissions estimates from the workshop make considerable progress toward closing the emissions discrepancy. The new industrial bottom-up emissions estimate (15 Gg/year total) includes emissions from chloromethanes plants (13 Gg/year) and feedstock fugitive emissions (2 Gg/year). When combined with legacy emissions and unreported inadvertent emissions, this could be up to 25 Gg/year. Top-down emissions estimates are: global 40 (25-55) Gg/year, gradient 30 (25-35) Gg/year, and regional 21 (14-28) Gg/year. While the new bottom-up value is still less than the aggregated top-down values, these estimates reconcile the CCl4 budget discrepancy when considered at the edges of their uncertainties

    Genetic and clinical determinants of abdominal aortic diameter: genome-wide association studies, exome array data and Mendelian randomization study

    Get PDF
    Progressive dilation of the infrarenal aortic diameter is a consequence of the ageing process and is considered the main determinant of abdominal aortic aneurysm (AAA). We aimed to investigate the genetic and clinical determinants of abdominal aortic diameter (AAD). We conducted a meta-analysis of genome-wide association studies in 10 cohorts (n = 13 542) imputed to the 1000 Genome Project reference panel including 12 815 subjects in the discovery phase and 727 subjects [Partners Biobank cohort 1 (PBIO)] as replication. Maximum anterior–posterior diameter of the infrarenal aorta was used as AAD. We also included exome array data (n = 14 480) from seven epidemiologic studies. Single-variant and gene-based associations were done using SeqMeta package. A Mendelian randomization analysis was applied to investigate the causal effect of a number of clinical risk factors on AAD. In genome-wide association study (GWAS) on AAD, rs74448815 in the intronic region of LDLRAD4 reached genome-wide significance (beta = −0.02, SE = 0.004, P-value = 2.10 × 10(−8)). The association replicated in the PBIO1 cohort (P-value = 8.19 × 10(−4)). In exome-array single-variant analysis (P-value threshold = 9 × 10(−7)), the lowest P-value was found for rs239259 located in SLC22A20 (beta = 0.007, P-value = 1.2 × 10(−5)). In the gene-based analysis (P-value threshold = 1.85 × 10(−6)), PCSK5 showed an association with AAD (P-value = 8.03 × 10(−7)). Furthermore, in Mendelian randomization analyses, we found evidence for genetic association of pulse pressure (beta = −0.003, P-value = 0.02), triglycerides (beta = −0.16, P-value = 0.008) and height (beta = 0.03, P-value < 0.0001), known risk factors for AAA, consistent with a causal association with AAD. Our findings point to new biology as well as highlighting gene regions in mechanisms that have previously been implicated in the genetics of other vascular diseases

    Improved Cellular Specificity of Plasmonic Nanobubbles versus Nanoparticles in Heterogeneous Cell Systems

    Get PDF
    The limited specificity of nanoparticle (NP) uptake by target cells associated with a disease is one of the principal challenges of nanomedicine. Using the threshold mechanism of plasmonic nanobubble (PNB) generation and enhanced accumulation and clustering of gold nanoparticles in target cells, we increased the specificity of PNB generation and detection in target versus non-target cells by more than one order of magnitude compared to the specificity of NP uptake by the same cells. This improved cellular specificity of PNBs was demonstrated in six different cell models representing diverse molecular targets such as epidermal growth factor receptor, CD3 receptor, prostate specific membrane antigen and mucin molecule MUC1. Thus PNBs may be a universal method and nano-agent that overcome the problem of non-specific uptake of NPs by non-target cells and improve the specificity of NP-based diagnostics, therapeutics and theranostics at the cell level
    corecore