58 research outputs found

    Symbiotic Legume Nodules Employ Both Rhizobial Exo- and Endo-Hydrogenases to Recycle Hydrogen Produced by Nitrogen Fixation

    Get PDF
    BACKGROUND: In symbiotic legume nodules, endosymbiotic rhizobia (bacteroids) fix atmospheric N(2), an ATP-dependent catalytic process yielding stoichiometric ammonium and hydrogen gas (H(2)). While in most legume nodules this H(2) is quantitatively evolved, which loss drains metabolic energy, certain bacteroid strains employ uptake hydrogenase activity and thus evolve little or no H(2). Rather, endogenous H(2) is efficiently respired at the expense of O(2), driving oxidative phosphorylation, recouping ATP used for H(2) production, and increasing the efficiency of symbiotic nodule N(2) fixation. In many ensuing investigations since its discovery as a physiological process, bacteroid uptake hydrogenase activity has been presumed a single entity. METHODOLOGY/PRINCIPAL FINDINGS: Azorhizobium caulinodans, the nodule endosymbiont of Sesbania rostrata stems and roots, possesses both orthodox respiratory (exo-)hydrogenase and novel (endo-)hydrogenase activities. These two respiratory hydrogenases are structurally quite distinct and encoded by disparate, unlinked gene-sets. As shown here, in S. rostrata symbiotic nodules, haploid A. caulinodans bacteroids carrying single knockout alleles in either exo- or-endo-hydrogenase structural genes, like the wild-type parent, evolve no detectable H(2) and thus are fully competent for endogenous H(2) recycling. Whereas, nodules formed with A. caulinodans exo-, endo-hydrogenase double-mutants evolve endogenous H(2) quantitatively and thus suffer complete loss of H(2) recycling capability. More generally, from bioinformatic analyses, diazotrophic microaerophiles, including rhizobia, which respire H(2) may carry both exo- and endo-hydrogenase gene-sets. CONCLUSIONS/SIGNIFICANCE: In symbiotic S. rostrata nodules, A. caulinodans bacteroids can use either respiratory hydrogenase to recycle endogenous H(2) produced by N(2) fixation. Thus, H(2) recycling by symbiotic legume nodules may involve multiple respiratory hydrogenases

    REST and neural gene network Dysregulation in iPSC models of Alzheimer’s disease

    Get PDF
    The molecular basis of the earliest neuronal changes that lead to Alzheimer’s disease (AD) is unclear. Here, we analyze neural cells derived from sporadic AD (SAD), APOE4 gene-edited and control induced pluripotent stem cells (iPSCs). We observe major differences in iPSC-derived neural progenitor (NP) cells and neurons in gene networks related to neuronal differentiation, neurogenesis, and synaptic transmission. The iPSC-derived neural cells from SAD patients exhibit accelerated neural differentiation and reduced progenitor cell renewal. Moreover, a similar phenotype appears in NP cells and cerebral organoids derived from APOE4 iPSCs. Impaired function of the transcriptional repressor REST is strongly implicated in the altered transcriptome and differentiation state. SAD and APOE4 expression result in reduced REST nuclear translocation and chromatin binding, and disruption of the nuclear lamina. Thus, dysregulation of neural gene networks may set in motion the pathologic cascade that leads to AD

    A systematic genome-wide analysis of zebrafish protein-coding gene function

    Get PDF
    Since the publication of the human reference genome, the identities of specific genes associated with human diseases are being discovered at a rapid rate. A central problem is that the biological activity of these genes is often unclear. Detailed investigations in model vertebrate organisms, typically mice, have been essential for understanding the activities of many orthologues of these disease-associated genes. Although gene-targeting approaches1, 2, 3 and phenotype analysis have led to a detailed understanding of nearly 6,000 protein-coding genes3, 4, this number falls considerably short of the more than 22,000 mouse protein-coding genes5. Similarly, in zebrafish genetics, one-by-one gene studies using positional cloning6, insertional mutagenesis7, 8, 9, antisense morpholino oligonucleotides10, targeted re-sequencing11, 12, 13, and zinc finger and TAL endonucleases14, 15, 16, 17 have made substantial contributions to our understanding of the biological activity of vertebrate genes, but again the number of genes studied falls well short of the more than 26,000 zebrafish protein-coding genes18. Importantly, for both mice and zebrafish, none of these strategies are particularly suited to the rapid generation of knockouts in thousands of genes and the assessment of their biological activity. Here we describe an active project that aims to identify and phenotype the disruptive mutations in every zebrafish protein-coding gene, using a well-annotated zebrafish reference genome sequence18, 19, high-throughput sequencing and efficient chemical mutagenesis. So far we have identified potentially disruptive mutations in more than 38% of all known zebrafish protein-coding genes. We have developed a multi-allelic phenotyping scheme to efficiently assess the effects of each allele during embryogenesis and have analysed the phenotypic consequences of over 1,000 alleles. All mutant alleles and data are available to the community and our phenotyping scheme is adaptable to phenotypic analysis beyond embryogenesis

    Germline MBD4-deficiency causes a multi-tumor predisposition syndrome

    Get PDF
    We report an autosomal recessive, multi-organ tumor predisposition syndrome, caused by bi-allelic loss-of-function germline variants in the base excision repair (BER) gene MBD4. We identified five individuals with bi-allelic MBD4 variants within four families and these individuals had a personal and/or family history of adenomatous colorectal polyposis, acute myeloid leukemia, and uveal melanoma. MBD4 encodes a glycosylase involved in repair of G:T mismatches resulting from deamination of 5′-methylcytosine. The colorectal adenomas from MBD4-deficient individuals showed a mutator phenotype attributable to mutational signature SBS1, consistent with the function of MBD4. MBD4-deficient polyps harbored somatic mutations in similar driver genes to sporadic colorectal tumors, although AMER1 mutations were more common and KRAS mutations less frequent. Our findings expand the role of BER deficiencies in tumor predisposition. Inclusion of MBD4 in genetic testing for polyposis and multi-tumor phenotypes is warranted to improve disease management

    Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012

    Get PDF
    OBJECTIVE: To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008. DESIGN: A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS: The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. RESULTS: Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO (2)/FiO (2) ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a PaO (2)/FI O (2) 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5-10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C). CONCLUSIONS: Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)
    corecore