42 research outputs found

    The Signal Transducer and Activator of Transcription 1 (STAT1) Inhibits Mitochondrial Biogenesis in Liver and Fatty Acid Oxidation in Adipocytes

    Get PDF
    The transcription factor STAT1 plays a central role in orchestrating responses to various pathogens by activating the transcription of nuclear-encoded genes that mediate the antiviral, the antigrowth, and immune surveillance effects of interferons and other cytokines. In addition to regulating gene expression, we report that STAT1-/- mice display increased energy expenditure and paradoxically decreased release of triglycerides from white adipose tissue (WAT). Liver mitochondria from STAT1-/- mice show both defects in coupling of the electron transport chain (ETC) and increased numbers of mitochondria. Consistent with elevated numbers of mitochondria, STAT1-/- mice expressed increased amounts of PGC1α, a master regulator of mitochondrial biogenesis. STAT1 binds to the PGC1α promoter in fed mice but not in fasted animals, suggesting that STAT1 inhibited transcription of PGC1α. Since STAT1-/-mice utilized more lipids we examined white adipose tissue (WAT) stores. Contrary to expectations, fasted STAT1-/- mice did not lose lipid from WAT. β-adrenergic stimulation of glycerol release from isolated STAT1-/- WAT was decreased, while activation of hormone sensitive lipase was not changed. These findings suggest that STAT1-/- adipose tissue does not release glycerol and that free fatty acids (FFA) re-esterify back to triglycerides, thus maintaining fat mass in fasted STAT1-/- mice

    Synonymous GATA2 mutations result in selective loss of mutated RNA and are common in patients with GATA2 deficiency

    Get PDF
    Deficiency of the transcription factor GATA2 is a highly penetrant genetic disorder predisposing to myelodysplastic syndromes (MDS) and immunodeficiency. It has been recognized as the most common cause underlying primary MDS in children. Triggered by the discovery of a recurrent synonymous GATA2 variant, we systematically investigated 911 patients with phenotype of pediatric MDS or cellular deficiencies for the presence of synonymous alterations in GATA2. In total, we identified nine individuals with five heterozygous synonymous mutations: c.351C>G, p.T117T (N = 4); c.649C>T, p.L217L; c.981G>A, p.G327G; c.1023C>T, p.A341A; and c.1416G>A, p.P472P (N = 2). They accounted for 8.2% (9/110) of cases with GATA2 deficiency in our cohort and resulted in selective loss of mutant RNA. While for the hotspot mutation (c.351C>G) a splicing error leading to RNA and protein reduction was identified, severe, likely late stage RNA loss without splicing disruption was found for other mutations. Finally, the synonymous mutations did not alter protein function or stability. In summary, synonymous GATA2 substitutions are a new common cause of GATA2 deficiency. These findings have broad implications for genetic counseling and pathogenic variant discovery in Mendelian disorders

    Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae

    Get PDF
    The survival of a species depends on its capacity to adjust to changing environmental conditions, and new stressors. Such new, anthropogenic stressors include the neonicotinoid class of crop-protecting agents, which have been implicated in the population declines of pollinating insects, including honeybees (Apis mellifera). The low-dose effects of these compounds on larval development and physiological responses have remained largely unknown. Over a period of 15 days, we provided syrup tainted with low levels (2 µg/L−1) of the neonicotinoid insecticide imidacloprid to beehives located in the field. We measured transcript levels by RNA sequencing and established lipid profiles using liquid chromatography coupled with mass spectrometry from worker-bee larvae of imidacloprid-exposed (IE) and unexposed, control (C) hives. Within a catalogue of 300 differentially expressed transcripts in larvae from IE hives, we detect significant enrichment of genes functioning in lipid-carbohydrate-mitochondrial metabolic networks. Myc-involved transcriptional response to exposure of this neonicotinoid is indicated by overrepresentation of E-box elements in the promoter regions of genes with altered expression. RNA levels for a cluster of genes encoding detoxifying P450 enzymes are elevated, with coordinated downregulation of genes in glycolytic and sugar-metabolising pathways. Expression of the environmentally responsive Hsp90 gene is also reduced, suggesting diminished buffering and stability of the developmental program. The multifaceted, physiological response described here may be of importance to our general understanding of pollinator health. Muscles, for instance, work at high glycolytic rates and flight performance could be impacted should low levels of this evolutionarily novel stressor likewise induce downregulation of energy metabolising genes in adult pollinators

    Angiotensin II Activates the Calcineurin/NFAT Signaling Pathway and Induces Cyclooxygenase-2 Expression in Rat Endometrial Stromal Cells

    Get PDF
    Cyclooxygenase (COX)-2, the inducible isoform of cyclooxygenase, plays a role in the process of uterine decidualization and blastocyst attachment. On the other hand, overexpression of COX-2 is involved in the proliferation of the endometrial tissue during endometriosis. Deregulation of the renin-angiotensin-system plays a role in the pathophysiology of endometriosis and pre-eclampsia. Angiotensin II increases intracellular Ca2+ concentration by targeting phospholypase C-gamma in endometrial stromal cells (ESC). A key element of the cellular response to Ca2+ signals is the activity of the Ca2+- and calmodulin-dependent phosphatase calcineurin. Our first aim was to study whether angiotensin II stimulated Cox-2 gene expression in rat ESC and to analyze whether calcineurin activity was involved. In cells isolated from non-pregnant uteri, COX-2 expression -both mRNA and protein- was induced by co-stimulation with phorbol ester and calcium ionophore (PIo), as well as by angiotensin II. Pretreatment with the calcineurin inhibitor cyclosporin A inhibited this induction. We further analyzed the role of the calcineurin/NFAT signaling pathway in the induction of Cox-2 gene expression in non-pregnant rat ESC. Cyclosporin A abolished NFATc1 dephosphorylation and translocation to the nucleus. Cyclosporin A also inhibited the transcriptional activity driven by the Cox-2 promoter. Exogenous expression of the peptide VIVIT -specific inhibitor of calcineurin/NFAT binding- blocked the activation of Cox-2 promoter and the up-regulation of COX-2 protein in these cells. Finally we analyzed Cox-2 gene expression in ESC of early-pregnant rats. COX-2 expression -both mRNA and protein- was induced by stimulation with PIo as well as by angiotensin II. This induction appears to be calcineurin independent, since it was not abrogated by cyclosporin A. In conclusion, angiotensin II induced Cox-2 gene expression by activating the calcineurin/NFAT signaling pathway in endometrial stromal cells of non-pregnant but not of early-pregnant rats. These results might be related to differential roles that COX-2 plays in the endometrium

    Repetitive Elements Trigger RIG-I-like Receptor Signaling that Regulates the emergence of Hematopoietic Stem and Progenitor Cells

    No full text
    Inflammatory signaling is required for hematopoietic stem and progenitor cell (HSPC) development. Here, we studied the involvement of RIG-I-like receptors (RLRs) in HSPC formation. Rig-I or Mda5 deficiency impaired, while Lgp2 deficiency enhanced, HSPC emergence in zebrafish embryos. Rig-I or Mda5 deficiency reduced HSPC numbers by inhibiting inflammatory signals that were in turn enhanced in Lgp2 deficient embryos. Simultaneous reduction of Lgp2 and either Rig-I or Mda5 rescued inflammatory signals and HSPC numbers. Modulating the expression of the signaling mediator Traf6 in RLR deficient embryos restored HSPC numbers. Repetitive element transcripts could be detected in hemogenic endothelial cells and HSPCs, suggesting a role as RLR ligands. Indeed, ectopic expression of repetitive elements enhanced HSPC formation in wild-type, but not in Rig-I or Mda5 deficient embryos. Manipulation of RLR expression in mouse fetal liver HSPCs indicated functional conservation among species. Thus, repetitive elements transcribed during development drive RLR-mediated inflammatory signals that regulate HSPC formation
    corecore