1,415 research outputs found

    Thermal-capillary model for Czochralski growth of semiconductor materials

    Get PDF
    The success of efficiently calculating the temperature field, crystal radius, melt mensicus, and melt/solid interface in the Czochralski crystal growth system by full finite-element solution of the government thermal-capillary model is demonstrated. The model predicts realistic response to changes in pull rate, melt volume, and the thermal field. The experimentally observed phenomena of interface flipping, bumping, and the difficulty maintaining steady-state growth as the melt depth decreases are explained by model results. These calculations will form the basis for the first quantitative picture of Cz crystal growth. The accurate depiction of the melt meniscus is important in calculating the crystal radius and solidification interface. The sensitivity of the results to the equilibrium growth angle place doubt on less sophisticated attempts to model the process without inclusion of the meniscus. Quantitative comparison with experiments should be possible once more representation of the radiation and view factors in the thermal system and the crucible are included. Extensions of the model in these directions are underway

    Loss factor and resonant frequency of viscoelastic shear-damped structural composites

    Get PDF
    Loss factor and resonant frequency of viscoelastic shear damped structural composite

    Optical-inertia space sextant for an advanced space navigation system, phase B

    Get PDF
    Optical-inertia space sextant for advanced space navigation syste

    Numerical Optimization of the Thermal Field in Bridgman Detached Growth

    Get PDF
    The global modeling of the thermal field in two vertical Bridgman-like crystal growth configurations, has been performed to get optimal thermal conditions for a successful detached growth of Ge and CdTe crystals. These computations are performed using the CrysMAS code and expand upon our previous analysis [1] that propose a new mechanism involving the thermal field and meniscus position to explain stable conditions for dewetted Bridgman growth. The analysis of the vertical Bridgman configuration with two heaters, used by Palosz et al. for the detached growth of Ge, shows, consistent with their results, that the large wetting angle of germanium on boron nitride surfaces was an important factor to promote a successful detached growth. Our computations predict that by initiating growth much higher into the hot zone of the furnace, the thermal conditions will be favorable for continued detachment even for systems that did not exhibit high contact angles. The computations performed for a vertical gradient freeze configuration with three heaters representative of that used for the detached growth of CdTe, show favorable thermal conditions for dewetting during the entirely growth run described. Improved thermal conditions are also predicted for coated silica crucibles when the solid-liquid interface advances higher into the hot zone during the solidification process. The second set of experiments on CdTe growth described elsewhere has shown the reattachment of the crystal to the crucible after few centimeters of dewetted growth. The thermal modeling of this configuration shows a second solidification front appearing at the top of the sample and approaching the middle line across the third heater. In these conditions, the crystal grows detached from the bottom, but will be attached to the crucible in the upper part because of the solidification without gap in this region. The solidification with two interfaces can be avoided when the top of the sample is positioned below the middle position of the third furnace

    Compact fermion to qubit mappings

    Get PDF
    Mappings between fermions and qubits are valuable constructions in physics. To date only a handful exist. In addition to revealing dualities between fermionic and spin systems, such mappings are indispensable in any quantum simulation of fermionic physics on quantum computers. The number of qubits required per fermionic mode, and the locality of mapped fermionic operators strongly impact the cost of such simulations. We present a fermion to qubit mapping that outperforms all previous local mappings in both the qubit to mode ratio and the locality of mapped operators. In addition to these practically useful features, the mapping bears an elegant relationship to the toric code, which we discuss. Finally, we consider the error mitigating properties of the mapping—which encodes fermionic states into the code space of a stabilizer code. Although there is an implicit tradeoff between low weight representations of local fermionic operators, and high distance code spaces, we argue that fermionic encodings with low-weight representations of local fermionic operators can still exhibit error mitigating properties which can serve a similar role to that played by high code distances. In particular, when undetectable errors correspond to “natural” fermionic noise. We illustrate this point explicitly both for this encoding and the Verstraete-Cirac encoding

    Colonization and survival of Phoma macrostoma, a weed biocontrol fungus

    Get PDF
    Non-Peer ReviewedCanada thistle, dandelion, chickweed, and scentless chamomile are common broadleaf weed pests of economic importance in western Canada. The fungus Phoma macrostoma demonstrates bioherbicidal activity and is being developed for control of these weed pests. However, little is known about the fate of the fungus in soil and plants. The aim of this research was to monitor the colonization of plant tissues by the fungus, and its movement and persistence in soil environments using a molecular detection method

    Application of the CIRSSE cooperating robot path planner to the NASA Langley truss assembly problem

    Get PDF
    A method for autonomously planning collision free paths for two cooperating robots in a static environment was developed at the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The method utilizes a divide-and-conquer type of heuristic and involves non-exhaustive mapping of configuration space. While there is no guarantee of finding a solution, the planner was successfully applied to a variety of problems including two cooperating 9 degrees of freedom (dof) robots. Although developed primarily for cooperating robots the method is also applicable to single robot path planning problems. A single 6 dof version of the planner was implemented for the truss assembly east, at NASA Langley's Automated Structural Assembly Lab (ASAL). The results indicate that the planner could be very useful in addressing the ASAL path planning problem and that further work along these lines is warranted

    Meeting of the Wheaton Club

    Get PDF

    Teaching Children According to Learning Preference

    Get PDF
    Several learning preferences describe students learning preferences. Learning sequence influences teaching order. Contemporary lecture-based, small group based, and activity-based methods for teaching are evaluated for which learning preferences are most compatible with each teaching method. Products can aid the teacher and student in their respective roles during the lesson. Other resources can instruct the people who lead the lesson in the classroom
    corecore