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Introduction and Methodology

Over 80 per cent of the silicon used by the electronics industry is
grown from the melt by the Czochralski (CZ) ecrystal growth process, which
is depicted schematically in Fig. 1. A single crystal boule is slowly pulled
from a pool of melt maintained by heating the outside of the crucible.
Surface tension acts against the force of gravity to form a meniscus connect-
ing the the growing crystal to the surface of the melt pool. The precise
temperature gradient needed to sustain the solidification of nearly perfect
crystalline solid is maintained by a cooler ambient above the crucible.
The crystal and crucible are rotated to minimize thermal asymmetry in the
system. In addition, as the melt level drops during growth, the crucible
is raised by movement of the pedestal so that the solidification front remains
in a specified region of the heater.

Capillarity and heat transfer determine the shape and stability of crys-
tals grown by the Czochralski method. We describe the solution of the first
quasi~steady, thermal-capillary model of the CZ growth process which directly
predicts the dependence of the crystal radius, melt-solid interface, and
melt/gas meniscus on growth parameters and thermal boundary conditions in
the furnace. The equations governing heat transfer are presented in Fig. 2.,
and the expressions for determining the radius and interface location are
shown in Fig. 3. We model heat transfer in the system as conduction-dominated
and include latent heat generation at the solidification interface. Radiation
and convection accounts for heat exchange between the melt and crystal and
the thermal surroundings. The thermal boundary conditions used in the calcu-
lations presented here represent an idealized, but qualitatively realistic
thermal environment for CZ crystal growth. The heating of the melt through
the crucible is modeled by specifying the temperature of the melt adjacent
to the crucible wall as a constant without coupling this value to the actual
power input to the crucible from the surrounding heater. Heat flows out
of the melt through the bottom of the crucible, according to a specified
heat transfer coefficient set to model energy loss to the pedestal and the
surroundings. By 1itself, this heat transfer system represents a slightly
nonlinear conductionradiation problem and its solution would be straight-
forward except that the shape of the melt and crystal are unknown and are
aprt of the solution.

The 1locations of the interfaces are coupled to the heat transfer in
the system by setting the shapes of the regions for conduction and by determin-
ing the surface areas for radiative and convective exchange with the ambient.
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The melt/solid interface is determined by the location of the melting point
isotherm. The shape of the melt meniscus is found from the Young-Laplace
equation of capillary statics, the condition for three-phase contact at the
melt/solid/gas tri-junction, the wetting condition at the crucible wall,
and by the specification of the instantaneous volume of the melt, The radius
of the crystal is determined so that the three-phase (melt/crystal/gas) equil-
ibrium contact angle for growth is satisfied (Surek and Chalmers 1975).

These relations form a complete set of coupled partial differential
equations for this complex nonlinear free-boundary problem. Only Ettouney
et al. (1983) have solved a thermal-capillary model with a similar degree
of complexity. As detailed in Fig. 4., We solve the field and boundary equat-
ions simultaneously by a finite-element/Newton scheme for the temperature
field in melt and crystal, the shapes of the meniscus and melt-solid inter-
face, and the radius of the crystal. Besides giving quadratic convergence
in each of these unknowns, the Newton method is the basis for
computer—implemented analyses of parametric sensitivity and stability
(Yamaguchi et al. 1984). The details of the finite element algorithm are
presented in a recent manuscript (Derby et al. 1985) for the modeling of
liquid encapsulated Czochralski growth of gallium arsenide.

Results

Results for the thermophysical properties characteristic of CZ Silicon
growth in a small-scale system are shown in Fig. 5. along with a specified
ambient temperature distribution. On the left representative isotherms are
shown for the melt and crystal. ©Note that heat flows into the melt from
the crucible wall and exits the melt both upward through the surface of the
melt and through the crystal and downward out of the bottom of the crucible.
The shape of the meniscus is shown along with the melt/solid interface which
is concave into the crystal. For this set of parameters, the resultant crys-
tal radius was 3.8 cm. On the right, the ambient temperature distribution
for this case is shown. The almost step decrease in the surrounding tempera-
ture field that occurs above the top of the hot crucible was modeled by the
ambient temeperature profile shown in Fig. 5. The hot crucible has an increas-
ingly important effect on the crystal size as the melt level drops and the
outer crystal surface directly views this distribution. Similar ambient
temperature distributions were used for the decreasing melt volume calculat-
ions of Figs. 10., 11., and 12.

The response of the system to changes in the steady-state growth rate
is detailed in Fig. 6. as the pull rate, represented by the dimensionless
Peclet number, is varied from 0-20 em/hr (0£PesO.4). All other parameters
were held constant and the ambient distribution was taken to be uniform at
1262K. The crystal radius decreased with increasing pull rate because of
the increased latent heat release at the interface. This effect has been
observed experimentally. The release of latent heat also was responsible
for the increasing curvature of the solidification interface. At higher
growth rates the interface became increasingly concave into the crystal.

Some computational aspects of these calculations are presented in Figs.
7 and 8. The converged finite-element meshes for each of the calculations
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are shown in Fig. 8. Meshes with 76 element were used in all calculations
presented in this report. The mesh follows the shape and position of the
changing interfaces for each case. Since the mesh was based on the location
of the free-boundaries, it converged as part of the entire solution with
every iteration. The iteration histories for these runs is detailed in Fig.
8. The convergence was quadratic, as expected for full Newton's method;
see Ettouney and Brown (1983).

Calculations are presented in Fig 9. for different equilibrium growth
angles for the wetting of the crystal by the melt. The angle is varied from
the reported 11 degree value for silicon to 45 and 90 degrees. There were
two major effects: the crystal radius decreased with increasing angle, and
the shape of the melt-solid interface changed from concave into the crystal
to convex into the melt as the angle increased from 11 to 90 degrees. The
last case for an equilibrium angle of 90 degrees corresponded to the assumpt-
ion used by most previous investigators of a flat melt surface joining the
crystal at right angles. This simplification obviously lead to erroneous
results, Accurate modeling of heat flow in this region necessitates inclus-
ion of the melt meniscus and the proper equilibrium angle.

The next series of figures represents the interaction of the temperature
field and interfaces with the melt volume. Several effects are present as
the melt level drops. The amount of heat entering the melt from the crucible
sides decreased because the surface area in contact with the wall decrea-
sed. Also, the heat loss out of the bottom of the crucible was increasingly
important in the shallower melt, and the hot c¢rucible wall was exposed.
The exposed wall allowed for radiative heat transfer from the hot crucible
wall directly into the growing crystal. First, we examine only the effect
of the dropping melt level without the complicating effects of radiative
heat transfer. The case of decreasing melt volume with an axially uniform
ambient temperature of 1262 K is shown in Fig. 10. Since the amount of heat
entering the melt decreased as the melt level drops, the radius of the crystal
increased. The effect of the heat loss through the bottom of the crucible
was manifested in a change of the interface shape from concave to sigmoidal.
This transition is known as interface flipping and commonly has been attri-
buted to transitions in the natural convection within the melt. Since our
calculations are for a conduction-dominated system, interface flipping was
caused solely by conductive heat 1losses through the melt and the changing
shape of the melt pool. Another related effect of the crucible heat loss
was the formation of a section of undercooled melt at the bottom of the cru-
cible for the shallow melt depth (Vm-O.Sw). In practice, this region would
be a small cap of solid silicon at the bottom of the crucible which can grow
large enough with decreasing melt depth to touch the upper melt/solid inter-
face. This is occasionally observed in practice, and is known as "crystal
bumping".

When we add radiation from the exposed wall in the form of the specified
axial temperature distribution discussed previously, we get the situations
depicted in Figs. 11. and 12, Even though the heat flow into the melt
decreased with the dropping melt, the radiative transfer of heat from the
exposed wall into the crystal can prevent the growth in the radius of the
crystal as the melt level dropped. This effect 1s seen for the case with
melt volume Vp=0.57 for the shallow crucible in Fig. 11. and for both cases
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for the deep crucible in Fig. 12. Radiation from the crucible wall to the
crystal is so overpowering for the deeper crucible case of Fig. 12 that a
-non-zero crystal radius did not exist for the Vp=0.5w% case. Radiative inter-
change between wall and crystal also magnified the interface flipping effect.
With heat entering the side of the crystal, the melt/solid interface was
pushed even further into the melt. The solid cap at the bottom of the cru-
cible was present for the melt volume Vp=0.5% shown in Fig. 11.

The changes in radius for decreasing melt volume are shown together
in Fig. 13. For the uniform ambient, the crystal radius increased steadily
with decreasing melt volume. When an ambient temperature distribution was
introduced to include the crucible wall the increasing effect of radiation
from the exposed wall the radius show either a maximum with decreasing volume
or decreased monotonically, depending on the depth of the crucible. For
the shallow crucible, the crystal radius initially increased as the melt
dropped, but decreased as more of the crucible wall was exposed to the view
of the crystal. This effect is even more dramatic for the deep crucible: the
radius decreased from the start and rapidly melted away so that no steady-
state growth was possible after some minimum volume was reached. This last
effect is often seen in practice where the crystal becomes very difficult
to grow as the melt level drops below some critical value.

Summary

We have demonstrated the success of efficiently calculating the tempera-
ture field, crystal radius, melt mensicus, and melt/solid interface in the
Czochralski crystal growth system by full finite-element solution of the
governing thrmal-capillary model. The model predicts realistic response
to changes in pull rate, melt volume, and the thermal field. The experi-
mentally observed phenomena of interface flipping, bumping, and the difficulty
maintaining steady-state growth as the melt depth decreases are explalned
by model results. These calculations will form the basis for the first quant-
itative pitcure of CZ crystal gowth. The accurate depiction of the melt
meniscus is important in calculating the crystal radius and solidification
interface. The sensitivity of our results to the equilibrium growth angle
place doubt on less sophisticated attempts to model the process without inclus-
ion of a the meniscus.

Quantitative comparison with experiments should be possible once more
representation of the radiation and view factors in the thermal system and
the crucible are included. Extensions of our model in these directions are
underway.
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Nomenclature

Bij, Biot number = ﬁch/ks for surface j;

Bo, Bond number = gRo2 p/0;

Cp, heat capacity [J/kgK];

€z, unit axial vector;

g, gravitational constant [m/s2];

hj, heat transfer coefficient for surface j tW/mZK];

Hj, height of interface i from bottom of crucible [m];

hi, dimensionless interface heights = hj/R;

k, thermal conductivity [W/mK];

Kj, temperature-dependent thermal conductivity ratio = kj/kg for region i;
nj, normal vector to surface i;

Pe, Peclet number = VpRapsCps/Ks;

r, radial coordinate measued from center of crucible [m];
r, dimensionless radial coordinate = F/Rc;

R, ecrystal radius [m];

R, dimensionless crystal radius = ﬁ/Rc;

Re, crucible radius [m];

Raj, Radiation number = o* jR,Tg3/kg for surface i;

S, Stefan number = Hpe/CpgTr;

T, temperature [K];

Tr, solidification temperature [K];

Vp, volume of melt [m3);

Vp, dimensionless volume of melt = Vp/Rg3;

Vp, steady-state crystal pull rate [m/s];

Z, axial coordinate measured from botton of crucible [m];

Z, dimensionless axial coordinate = E/Rc;
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Greek symbols

He, heat of fusion [J/kg-molel;

p, density difference across melt meniscus;

jo emissivity of surface j;
Aj, dimensionless reference pressure = Pi,datum/ pigRes
¢, equilibrium wetting angle;
p, density [kg/m2];

o, surface tension [J/m];

*

v*, Stefan-Boltzmann constant [W/m2KY);

e, dimensionless temperature = T/Tg;

Subscripts

a, ambient;

C, crucible;

i,j, numerical indeces denoting surface, domain, or equation;
m, melt;

s, solid.

201



Czochralski Crystal Growth
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Steady-State Thermal-Capillary Model
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CAPILLARITY AND INTERFACES
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FINITE ELEMENT/NEWTON METHDD
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Finite-Element Meshes for Different Pull Rates -
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Variations in Equilibrium Angle
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Decreasing Melt Volume—Shallow Crucible
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ELWELL:

BROWN:

DISCUSSION

Is it too complicated to plug convection in the Czochralski system?

It depends on your goal. We are working on convection, and we are

working on convection in other systems that are quite a bit simpler
than this. To come up with a good algorithm for doing convection in
a large Czochralski system means you have to handle convection that
is in the never-never land between laminar and turbulent flow, which
is essentially chaotic. It is too complicated at present to plug
that kind of convection model into a calculation like this and hope
to get back out some kind of a control strategy. Those are
supercomputer-type calculations, unless you are willing to put in a
turbulent model, which we are not willing to do right now.

DUDUKOVIC: You use a static value of the contact angle in all of your

BROWN:

calculations, which is of course fine because presumably the pulling
rates are so low. What do you do about the value of that angle in
presence of the Marangoni effect?

1f you really believe that is a thermal physical property of what is

right down at the intersection between melt/solid and gas then you
would believe that the bulk fluid mechanics should not have a lot of
effect on them. That concept has been shown to have been true not
in solidification systems but in normal wetting conditions as long
as the contact line is not moving at high rates of speed.

DUDUKOVIC: At the moment that's the best assumption one can make, but isn't

BROWN:

there still some doubt about it under dynamic conditions?

If it's a microscopic property of the physics of the tri-junction I

don't think there is any scaling you can do to show that a bulk flow
can affect it. For example, gravity cannot affect it. The same
kind of argument you would use to say that the surface tension is
independent of gravity is used and, in fact it's one order of
magnitude worse.

KIM: 1In your aluminum segregation study, what was the effective segregation

BROWN:

coefficient that you have measured?

One.

KIM: What was the solid boundary layer thickness?

BROWN:

KALEJS:

There is no boundary layer thickness because in the EFG system that is

a big problem. The flow field in the die is well developed and
there is no effective segregation in the system. Any aluminum that
comes up through that die has to go into the crystal. It has no
place else to go.

It is quite true for Kgee equal to unity that there are a lot of
impurities that ended up very close to the meniscus, but this is

212



SUREK:

BROWN:

SUREK:

BROWN:

WITT:

BROWN:

true for a lot of the shaped crystal growth systems like web. We
have looked at this and found that the change in surface tension
with impurity concentration goes opposite to the temperature
difference, so you may expect some kind of cancellation due to
impurity effects, particularly in K,ef equal to unity where a lot
of impurities do end up in the meniscus.

Regarding Professor Dudukovic's question: the contact angle was

determined over many orders of magnitude of growth rate, essentially
from zero growth rate to very fast growth rate without much
variation, so it seems to be a property of the silicon at a triple
junction. My question is if you showed points or regions where
there is no existence of a steady-state solution, would that be the
limit of stability, in your opinion?

The EFG calculations give you the growth-rate limit for steady-state

In

In

How

We

solutions for growing a ribbon with that die at that K,gg. We had
not found similar limits in the Czochralski system, but I think all
one needs to do is play around with the thermal ambient to actually
find growth-rate limits in that system also. I don't think people
worry about it as much because they concentrate more on high-quality
material and less on growth speed.

what system was it that you found no solution?

the Czochralski system. Essentially that's associated with just
excessive heat transfer from the ambient directly into the crystal,
which essentially just blocks up the heat so that you can't get it
out of the melt. We are not sure whether or not that is essentially
just the crystal growing to zero diameter or whether or not there
really is a limit point there. We haven't refined that enough to
find out.

do you handle the complication that normally is encountered when you
grow dislocation-free silicon? 1In conventional growth, you end up
with the peripheral interface facet, which places the critical
portion of the crystal into a supercooled state, and we know that
you lose, for one reason or another, the dislocation-free growth
configuration. The instantaneous consequence is a significant
change in crystal diameter, which means that effectively the growth
does not occur in critical portions, particularly at the periphery,
which is a critical point way away from the melting point. My
second question: a very important element is the rate of crucible
consumption or the melt/crucible interaction or the mass transfer
related to oxygen and impurities. Are you looking at these factors?

have not been. Obviously, if you take the same segregation model we
can dissolve the crucible with it if you want. We have not been
doing it. 1In answer to your first question, interface faceting is a
fantastic piece of physics that could be put in here if I knew the
orientation and undercooling law for doing it. There's nothing that
keeps us from putting in a faceted growth mode at the interface. It
would be very interesting to do, and there are some mathematical
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reasons why it's very nice to do in the finite-element formulation.
You could very easily come up with an interface that has facets
along part of it and equilibrium growth on other parts. If someone
would stick their neck out and give me the undercooling law I'd love
to do it, because I think it would be very interesting. I think
that introduces an additional non-linearity, which I think can give
you catastrophic behavior, which is what you referred to with the
loss of the facet in the growth of the crystal. Do you know of
someone that has written down this nucleation law?

WITT: It is still very .controversial in details. The theory is worked out.
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