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Mappings between fermions and qubits are valuable constructions in physics. To date only a handful exist.
In addition to revealing dualities between fermionic and spin systems, such mappings are indispensable in any
quantum simulation of fermionic physics on quantum computers. The number of qubits required per fermionic
mode, and the locality of mapped fermionic operators strongly impact the cost of such simulations. We present
a fermion to qubit mapping that outperforms all previous local mappings in both the qubit to mode ratio and
the locality of mapped operators. In addition to these practically useful features, the mapping bears an elegant
relationship to the toric code, which we discuss. Finally, we consider the error mitigating properties of the
mapping—which encodes fermionic states into the code space of a stabilizer code. Although there is an implicit
tradeoff between low weight representations of local fermionic operators, and high distance code spaces, we
argue that fermionic encodings with low-weight representations of local fermionic operators can still exhibit
error mitigating properties which can serve a similar role to that played by high code distances. In particular,
when undetectable errors correspond to “natural” fermionic noise. We illustrate this point explicitly both for this

encoding and the Verstraete-Cirac encoding.
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I. INTRODUCTION

One of the most striking features of fermions is the non-
locality of their state space. This nonlocality is necessitated
by their antisymmetric exchange statistics—the phase of the
wave function yielded by a fermion tracing a path past an even
number of its counterparts differs from that yielded by a path
past an odd number. However, causality is preserved by parity
superselection [1], which forbids superpositions of even and
odd fermion number, preventing the direct measurement of
these phase differences.

A consequence of this nonlocality is that any represen-
tation of fermionic systems on collections of local quantum
systems, such as qubits or distinguishable spins, must in-
troduce nonlocal structure [2]. This is most readily seen in
the Jordan-Wigner (JW) transform [3], which maps fermionic
creation (aiT) and annihilation (a;) operators, which create
and annihilate a fermion at mode i and satisfy the canonical
anticommutation relations

{G,T, aj} = Sij,

faj,al} =0, {a,a}=0, (1)

to stringlike Pauli operators

al = 3721..Zi1(X; — iY)). 2
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Under this mapping even local observables conserving
fermion parity, such as lattice hopping terms (aiTa i+ a;f-a,-),
are mapped to strings of Pauli operators which may be as large
as the size of the system.

The JW transform is an example of a mapping between
fermions and qubits. Such mappings describe a correspon-
dence between states of fermions and states of qubits, or,
equivalently, between fermionic operators and multiqubit op-
erators. They are restricted to fermionic systems with a
discrete set of modes, since qubits possess finite dimensional
Hilbert spaces, and are typically applied to fermionic lattice
models. Many mappings are tailored to specific lattices.

A potential application where fermion to qubit mappings
would be indispensable is the simulation of fermions by quan-
tum computers. The accurate simulation of fermions has long
posed a fundamental challenge to classical computers. Since
the conception of quantum computers it has been understood
that one of their primary applications would be in addressing
this challenge, with substantial potential impact on a broad
range of scientific disciplines.

Using a fermion to qubit mapping, a fermionic Hamilto-
nian may be mapped to a qubit Hamiltonian H = ), H;, with
the terms H; constituting tensor products of Pauli operators.
A quantum computer can perform an effective simulation of
the fermionic Hamiltonian by simulating time dynamics under
H. The primary strategy to do this is via a Trotter expan-
sion, which consists of dividing the time evolution unitary
into a product of short evolutions generated by the terms H;
[4-6]. This is followed by a further decomposition of these
short evolutions into sequences of quantum gates. However
the greater the number of qubits on which these individual

©2021 American Physical Society
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TABLE I. A comparison of existing local fermion encodings on an L x L lattice of fermionic modes. The compact encoding presented in
this work is given in the three rightmost columns. Max weight Coulomb and max weight hopping denote the maximum Pauli weights of the
mapped Coulomb (ajaia';aj) and nearest neighbor hopping (aj'a_,- + a;a,v) terms, respectively. Encoded fermionic space denotes whether the
full or even fermionic fock space is represented. Graph geometry denotes the hopping interaction geometry which the mapping is tailored to.

Mapping [13] [10,11] [15] [12] [14] even face number majority even faces majority odd faces
Qubit L(L—1) 20> 2L(L—1) 2L2—L 3L 1502 — L 1502 —L—1 1502 —L+1
Number
Qubit to 2 2 1 2 2 1 2 1
Mode Ratio 2-7 2 2-7 2—+ 3 1L.5-#% 1L.S5—%—57 1L5—2+4 57
Max Weight Hopping 6 4 4 5 4 3 3 3
Max Weight Coulomb 8 2 6 6 6 2 2 2
Encoded
Fermionic Even Full Even Full Even Full Even Full Plus Qubit
Space
Square Square
Graph Geometry General  General Lattice Lattice General  Square Lattice Square Lattice Square Lattice

Hamiltonian terms H; act—i.e., the Pauli weight—the more
costly the circuit decomposition [7,8]. Similar considerations
also inform the performance of other quantum algorithms,
such as VQE [9]. Thus, there has emerged a practical need to
design fermion to qubit mappings which minimize the Pauli
weight of commonplace fermionic operators. In particular
those fermionic interactions which couple nearby fermionic
modes—i.e., geometrically local operators—which feature
prominently in physically realistic systems.

The JW transform performs poorly in this respect because
all of the requisite fermionic nonlocality is manifest in the
observables, as opposed to the states—the fermionic Fock
states map directly to seperable binary states. One may instead
design a mapping which encodes the nonlocality in the states,
by mapping fermionic states into a highly entangled subspace
of the multiqubit system. In this way one can retrieve low
weight qubit representations of geometrically local fermionic
operators. We refer to such mappings as local fermionic en-
codings.

There currently exist a handful of local fermionic encod-
ings [10-15]. A comparison of these encodings is given in
Table I. Two terms which are ubiquitous in fermionic Hamil-
tonians are lattice hopping, and Coulomb interactions. The
minimum upper bounds on the Pauli weights of these terms
under any of these encodings is 4 and 2, respectively. Further-
more, all of these encodings employ approximately 2 or more
qubits per fermionic mode.

In Sec. II of this work we present a local fermionic
encoding—which we call the compact encoding—that not
only outperforms all existing local encodings in terms of
Pauli weight, yielding for instance max weight 3 hopping
terms, but also employs fewer than 1.5 qubits per mode.
We expect these features to find significant use in near-term
quantum computing applications, where resources are lim-
ited. The mapping can be thought of as a modified toric
code [16,17] that condenses local pairs of particle excita-
tions, yielding a low energy subspace which corresponds
to a fermionic Hilbert space. For clarity we focus in this
work on the square lattice; however, the design scheme

of the encoding may also be applied to other interaction
graphs, yielding similar cost benefits. In Appendix B we
illustrate how the scheme may be applied to a hexagonal
lattice.

All local encodings map fermionic states into a subspace
of a multiqubit Hilbert space via the formalism of stabilizer
codes, by defining a set of mutually commuting Pauli opera-
tors (stabilizers) for which the subspace constitutes a common
+1 eigenspace. Stabilizer codes are commonly employed in
the detection and/or correction of physical qubit errors. It
is therefore natural to consider to what extent the existing
local fermionic encodings can correct or detect physical qubit
errors. However, good error correcting/detecting codes must
have high weight logical operators, so that the code distance
is not small. Thus, error correction/detection is seemingly at
odds with the goal of low-weight logical fermionic opera-
tions. For example, there exist two local fermionic encodings
[14,15] that are also error correcting codes. Although both
yield weight 4 hopping terms, the coulomb terms are weight
6. In contrast the compact encoding yields weight 2 coulomb
terms.

In Sec. III we argue that, despite the apparent con-
flict between low-weight fermionic operators and error
correction/detection, there can exist valuable error mitigating
properties of fermionic encodings that do not need to be
sacrificed in the pursuit of low-weight fermionic operators,
and that the compact encoding exhibits such properties. In
particular, in the context of fermionic simulation of natural
systems, one might tolerate—or even desire—some noise in
the physical qubits, provided that this noise translates into
“natural” fermionic noise in the simulated fermionic system.
The notion that hardware level noise may be translated into
simulated noise is explored in generality in Ref. [18]—we
consider how this reasoning applies in the specific context of
fermionic encodings and in particular to the compact encod-
ing and the Verstraete-Cirac (VC) encoding. We catalog all
weight-1 errors that are correctable/detectable in the compact
encoding and show that the remaining weight-1 errors may be
understood as local fermionic phase noise in the code space.
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Such fermionic phase noise appears naturally in fermionic
systems coupled to a bosonic bath, such as phonons in a lat-
tice. We additionally show how these error mitigating features
may be employed in a simulated time evolution algorithm.

II. THE COMPACT ENCODING

There are two design strategies that all existing local
fermionic encodings employ. One strategy, employed by
encodings presented in Refs. [10-12], leverages the Jordan-
Wigner transform, and defines stabilizers that “cancel out”
sections of the long strings, discarding a portion of the
fermionic modes in the process.

The second strategy, employed by the encodings presented
in Refs. [13-15], as well as the compact encoding presented
here, focuses instead on finding a set of low weight Pauli
operators which reproduce all of the local (anti)-commutation
relations of the fermionic “edge” (Ej) and “vertex” (V)
operators—which are most concisely defined in terms of Ma-
jorana operators y; := a; + a'j‘f andy; 1= (a; — a;)/i:

Ej = —iyjve, Vi=:—iyjv;. 3)
These operators are Hermitian, traceless, self inverse and sat-
isfy Ej; = —Ey;. Pairs of such operators anticommute if and

only if they share an index, and encodings of this second kind
aim to reproduce these local (anti)-commutation relations.
More precisely,

{Ejr,Vi} =0, {Ej Eyx} =0, 4
and for all i # j # m # n,
[Vi’ V}] = 07 [Eij7 Vm] = 0, [Eij’ Emn] =0. (5)

All even fermionic operators (i.e., even products of creation
and annihilation operators and sums thereof) can be expressed
in terms of edge and vertex operators [13]. Furthermore,
all parity preserving operators are even fermionic operators
and so in accordance with parity superselection all physical
fermionic observables are even fermionic operators.

Associating Pauli operators to each edge and vertex op-
erator such that the above conditions are satisfied almost
completely defines a mapping from the even fermionic op-
erators to qubit operators. However there exists an additional
nonlocal relation: the product of any loop of edge operators
must equal the identity. More precisely,

(IpI=1)
P I Eppe =1 (©)
i=1

for a cyclic sequence of sites p = {py, p2, ..., p|p| = P1}-

Given a mapping from edge operators to Pauli operators,
the expression on the left hand side of Eq. (6) also in general
maps to a Pauli operator. However, by restricting the mapped
fermionic states to the common +1 eigenspace of these Pauli
operators (i.e., taking them to be the stabilizers), Eq. (6) be-
comes satisfied in that subspace.

For all prior encodings which have employed this second
strategy, the stabilizers additionally generate the total fermion
parity operator [ [, V;, fixing its value to +1, so that the map-
pings only admit representations of even fermionic states.
The mapping given in this work is the first employing this
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FIG. 1. Qubit assignment, edge orientation, and examples of
mapped edge and vertex operators for a4 x 5 square lattice. Vertices
are numbered left to right, top to bottom.

design strategy that can avoid this side-effect. In this case one
may represent states violating parity superselection, and so
the full fermionic algebra admits a representation. This addi-
tional structure is completely specified by mapping a single
Majorana operator to a qubit operator, satisfying appropriate
(anti)-commutation relations.

We now proceed with a complete description of the com-
pact encoding (See Appendix C for proof of correctness of
the encoding). It suffices to define mappings from edge and
vertex operators to qubit operators. Consider a square lattice
of fermionic sites at the vertices. Label the faces of the lattice
even and odd in a checker-board pattern. For each fermionic
site j associate a “vertex” qubit indexed by j. Associate a
“face” qubit to the odd faces. Assign an orientation to the
edges of the lattice so that they circulate around the even faces
clockwise or counterclockwise, alternating on every row of
faces. This is illustrated in Fig. 1. We refer to the vertex qubits
as “primary” qubits, and the face qubits as “auxiliary” qubits.

Here and throughout we denote mapped operators with a
tilde overscript. Let f(i, j) index the unique odd face adjacent
to edge (i, j). For every edge (i, j), with i pointing to j, define
the following mapped edge operators:'

XinXf(l',j) (l, ]) oriented dOWH,
Eij = —X,‘Yij(,',j) (l, ]) oriented up, (7)
XYY jy (i, j) horizontal.,
E.fi = —E,‘j. (8)

For those edges on the boundary which are not adjacent to
an odd face, omit the Pauli operator that would otherwise be
acting on a face qubit. For every vertex j define the mapped
vertex operators

V:=2Z,. ©)]
This specifies all mapped vertex and edge operators and is
illustrated in Fig. 1.

I'The difference in sign introduce between the vertical up and down
orientations is included to ensure that cycles around odd faces are
equal to 1 and not —1.
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FIG. 2. Nontrivial stabilizer of the encoding.

This mapping satisfies the local (anti-)commutation rela-
tions Eqgs. (4) and (5). The intuition is that a directed edge
has an X on the tail and a Y on the head. Whenever the head
of one edge touches the tail of another the edge operators
anticommute, while if two edges touch head to head or tail
to tail they commute. By adding a qubit at some faces, and
choosing an appropriate orientation for the edges, one can
enforce the additional necessary anticommutation relations at
the face qubits.

Given a lattice with M fermionic modes, this encoding uses
fewer than 1.5M qubits. Furthermore this construction yields
hopping and Coulomb terms with Pauli weight at most 3. The
reason that the Pauli weights and qubit numbers are so low
is that the face qubits are used extremely efficiently, each one
enforcing anticommutation relations at four bounding corners.

To satisfy Eq. (6) one must project into the common +1
eigenspace of all loops of edge operators. In the case of a pla-
nar graph the loops around faces form a minimal generating
set. The stabilizers associated with even faces are nontrivial
and illustrated in Fig. 2, while the stabilizers associated with
odd faces are equal to 1. Therefore, the number of indepen-
dent constraints, dividing the Hilbert space in two, is given
by the number of even faces. By a simple counting argument
the dimension of the subspace to which fermionic states are
mapped is thus given by

subspace dimension = 2M*TOF~EF, (10)

where M is the number of fermionic modes, OF is the number
of odd faces, and EF is the number of even faces.

There are three distinct cases for which the subspace di-
mension differs:

(I) There are an even number of faces, and so an equal
number of even and odd faces.

(IT) There is one more even face than odd face.

(IIT) There is one more odd face than even face.

The reader may wish to examine sublattices in Fig. 1 to
develop an intuition for these cases.

In case (I) the encoding represents the full fermionic Fock
space I, with dimension 2M. Therefore, single Majorana op-
erators also admit a representation. It suffices to specify one
Majorana, and all others may be constructed using edge and
vertex operators. A Majorana operator y; must anticommute
with all edges incident on site j as well as the vertex operator
V;. Any corner vertex j which bounds an odd face must either
have arrows pointing into it or pointing away from it. If the
arrows point into (away from) the corner, then the mapped
Majorana is 7; = X; (¥;). There are two possible choices of

corners. The choice is arbitrary, but once a corner is chosen
then the equivalent operator at the remaining corner corre-
sponds to a Majorana hole operator ; := y; [ | i Vi

In case (II) the dimension of the subspace is 2M~!, which
is half of the full fermionic Fock space. Furthermore, up to
multiplication by stabilizers, [; V; = 1. Thus, this encoding
represents the even fermionic Fock space. This is evidenced
by the fact that there are no corner vertices bounding odd faces
on which to define a Majorana operator.

Finally, in case (II) the dimension of the subspace is 2M*!,
i.e., the full fermionic Fock space plus an additional “logical”
qubit degree of freedom: F ® C2. In this case there are four
corner vertices on which to define a Majorana operator. These
four Majoranas can be thought of as four distinct species
A;, B;, C;, and D;, each introduced at a different corner and
translated by edge operators to site i. Pairwise annihilation of
differing species of Majorana yield three distinct vacua: €,
€, €3. Identifying one species of Majorana (in this case A)
to act as the canonical Majorana operator on the fermionic
system and identity on the logical qubit, the other three species
become identified with majorana hole operators multiplied by
logical Pauli operators on the logical qubit.

Ai=701, (11)

Bi=h®X, C=h®Y, Di=h®Z. (12)

The vacua are thus identified with applying logical Pauli op-
erators on the logical qubit:

E]ZX, 62:Y, 6322. (13)

These logical Pauli operators are mapped to multiqubit
Pauli operators which span the length of the system (see
Appendix A for more details), thus the logical qubit is topo-
logically protected. This is highly suggestive of a connection
to the toric code.

Indeed the stabilizers of the encoding presented here are
tensor products of toric code star (Ilg) and plaquette (I1p)
operators on the face qubits (up to local rotations) and four
qubit Z parity checks on the vertex qubits. This is illustrated
in Fig. 3.

The toric code Hamiltonian

Here =—» Tg— Y Tp (14)

has localized electric (¢) and magnetic (m) excitations, cor-
responding to energy contributions from ITg and I1p terms.
These excitations exhibit fermionic mutual statistics and
bosonic self statistics. Consequently a composite of ¢ and m
excitations exhibits fermionic self statistics. The addition of
the four qubit Z parity operators yields a modified Hamilto-
nian,

Hy=-Y Ms®Z— Y 1,82, (15)

for which specific localized pairings of e and m particles no
longer cause an energy penalty. More concretely, any path of
edge operators E;; = —iy;y; corresponds to the creation of
a pair of Majoranas at either end of the path. Each of these
Majoranas give rise to bound pairs of e and m particles in Hoic
which have no energy penalty in Hy,, and exhibit fermionic
exchange statistics. This is illustrated in Fig. 4.
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FIG. 3. The toric code (dotted purple) embedded in the compact
encoding. Each stabilizer is a tensor product of either a plaquette I,
(red) or star I, (blue) operator, with a four qubit Z parity operator
(black).

In this sense the compact encoding leverages the topolog-
ical order of the toric code to generate nonlocal exchange
statistics. Similar connections appear in other fermionic en-
codings [10,13,15] but not as explicitly.

III. ERROR MITIGATING PROPERTIES

The compact encoding represents fermions in a stabilizer
code space and thus can be analyzed within the framework
of quantum error correction. Operators that commute with
elements of the stabilizer group are logical operators and
preserve the code space. Operators that do not commute take
states out of the code space and can thus be detected by stabi-
lizer measurements—these operators are called detectable. If
the stabilizer measurements yield a unique signature, then the
operators are called correctable. For the purposes of reducing
error rates it is preferable to engineer a code to detect or
correct as many error operators as possible. We begin by
cataloguing all weight-1 qubit errors that are undetectable
in the compact encoding. Our analysis here is motivated by
the assumption that weight-1 Pauli noise dominates in the
given noise model. This is consistent with the most commonly
studied qubit noise model, iid depolarising noise, amongst
others.
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FIG. 4. A pair of Majorana particles, generated by a string of
edge operators (black) in the compact encoding correspond to local-
ized pairs of e (blue) and m (red) particles in the toric code.
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FIG. 5. Graphical representation of the syndromes of single qubit
errors on the compact encoding on vertex qubits (upper) and face
qubits (lower). The red circlular arrows represent the loop stabilizers
that anticommute with the given error. Z on a vertex qubit has no
syndrome as it is a logical operator. For boundary cases where a
highlighted stabilizer does not exist, it is omitted from the syndrome.
Note that errors on vertex qubits can occur in contexts where the odd
and even faces are inverted from how they are illustrated here. In this
case the syndrome is similarly inverted.

Theorem 1. In the compact encoding for square lattices,
the only nontrivial, undetectable, Pauli weight-1 errors are:

(1) Z operators on primary qubits, which map to mode-
weight-1 fermionic phase errors Z; = —iy;y ;.

(2) In the case where the full fermionic space is encoded,
X or Y errors on those corners adjacent only to an odd face,
which map to single Majorana or Majorana hole operators,
depending on the choice of convention.?

Proof. There can be X, Y, or Z errors, either on the lattice
face qubits (auxiliary qubits), or the vertices (primary qubits).
We address them separately.

a. Auxiliary Qubits. By inspection of the syndromes of
single qubit errors shown in Fig. 5, it is evident that Pauli
weight 1 errors on face qubits always have a syndrome and
are thus detectable.

b. Primary Qubits. Any Z errors on vertex qubits are un-
detectable as they have no syndrome; they correspond to
fermionic phase errors. However, X and Y errors on vertex
qubits are detectable, as they induce syndromes on two diag-
onally offset loop stabilizers. However, there may be corners
of the lattice which are not touching a stabilizer (i.e., a corner
which only touches an odd face). X or Y errors on those vertex
qubits correpond to single Majorana or Majorana hole opera-
tors. These are parity switching errors, so are not possible if
only the even fermionic subspace is encoded. |

To summarize, all weight-1 qubit errors fall into one of
three categories: detectable errors; errors that correspond to
phase noise on a single mode; and a small number of errors
that correspond to Majorana operators on a single mode. We
note that the VC encoding has exactly these properties as well.

’For example, X; — y;, Y > vior Xi=y ]_[j(—iyJ?j), Y, —
7. 11 j(=iy;¥;). For a fixed fermionic parity, the operator
I—[j(—iyjf,.) is a good quantum number equal to +1, and so
fermionic hole operators can be thought of as mode-weight-1
fermionic operators.
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This is originally discussed in Ref [15]—although there exists
a Majorana error occurring on the first data qubit which that
work overlooks—and thus many of the following considera-
tions hold equally well for the VC encoding.

Although the Majorana errors can only occur on very few
sites, they can take a fermionic state into one which violates
parity superselection. In Sec. III A we present some alternative
techniques for avoiding or detecting these errors.

Ignoring for the moment the Majorana errors we turn our
attention to the on-site phase errors —iy;y; associated with
Z operators on the primary qubits of the compact encoding
as well as the VC encoding. A common fermionic lattice
model is one in which lattice sites correspond to atomic
positions. These atomic positions are often considered to be
fixed. However, one may consider the possibility of phonons
in the lattice of atoms, and how these phonons couple to the
electrons as a source of noise. To first order, this coupling
is dominated by low energy acoustical modes [19,20], with
interaction Hamiltonian

1
— il +
Hin = kZ ;gqakﬂ,”ak,v(bq +ol), (16

where ag) and bg) are, respectively, the annihilation and cre-
ation operators for fermions and phonons with momentum k.

For a thermal bosonic bath, the effective noise model
of this interaction on the fermionic system is spontaneous
hopping of fermions into different momentum modes. In the
position basis this translates into dephasing noise [21], since
motion in momentum space corresponds to phase shifts in
position space. The fermionic dephasing operator is

(1 =2N;) = —iy,v;. a7y

We present a more thorough account of the derivation of this
noise model in Appendix D.

Thus, we see that, given an appropriate choice of particle
basis to which the fermionic modes of a lattice model are
chosen to correspond, every undetectable error in the com-
pact encoding and the VC encoding—excluding the Majorana
errors—may be interpreted as local and natural physical noise
in the simulated fermionic system. In cases where incorpo-
rating the effect of natural thermal noise into the simulation
is acceptable (or even desirable), then instead of detecting or
correcting such errors, one might be satisfied with accepting
such errors in the simulation. We discuss the mechanics of this
in Sec. III B.

Finally, we note that if one chooses to accept Pauli Z errors
on primary qubits, then this generates an equivalence relation
between X and Y errors on primary qubits, such that they
become effectively correctable. More specifically, the signa-
tures of an X and Y error on a primary qubit are identical.
Thus, applying a random X or Y correction in response to
such a syndrome will either successfully remove the error or
introduce a Z error, which maps onto natural fermionic phase
noise. This, together with the fact that all single qubit Pauli
errors on auxiliary qubits are correctable in both the VC and
compact encodings, implies that active error correction could
in principle be deployed for all single qubit errors, provided
one is willing to accept additional phase noise in the simulated
fermionic system. All of this is of course predicated on the

assumption that one avoids the Majorana errors, which is
addressed in the next section.

A. Avoiding Majorana errors

Depending on the choice of orientation, lattice shape and
convention, an X or Y error on the compact encoding at
the corners of the lattice may be undetectable and map to a
single Majorana error y; or y;. These Majorana errors can be
quite serious—if they occur coherently, then they may yield
encoded states that correspond to unnatural fermionic states
which violate parity superselection.

Of course, any error that breaks parity superselection, such
as single Majoranas, can be detected by simply measuring
the parity of the fermionic system as a stabilizer. This parity
stabilizer is given by the product of vertex operators at every
fermionic site, which in the case of the compact encoding (and
the VC encoding) corresponds to the product of Z operators
on every primary vertex qubit. However, if one is performing
nondestructive and coherent stabilizer measurements, or is
interested in measuring observables that do not commute with
the vertex operators, then such a stabilizer can be very costly
to measure coherently.

Majorana errors appear in the VC encoding in a similar
fashion to the compact encoding, and we make a brief com-
ment on these to start, before proceeding with strategies for
mitigating these errors in the compact encoding. The princi-
ple behind the VC encoding is that the fermionic system is
represented using the JW transform; however, the long strings
of Z operators are avoided by interleaving auxiliary fermionic
modes in the linear ordering of the JW transform, and defining
stabilizers to be those interactions between auxiliary modes
which are adjacent in the desired lattice geometry but not
in the linear ordering. These stabilizers may be used to can-
cel the strings of Z operators that would otherwise appear
in the interactions between the primary modes. Under the
standard interleaving of the modes—alternating primary and
auxiliary—an X or Y operator on the first primary mode is
undetectable and acts as a majorana operator. We note that
simply exchanging the ordering of the first primary and auxil-
iary modes—while leaving the order of the remaining modes
unchanged—solves this problem (making the Majorana op-
erator weight 2) at no cost to the performance of the VC
encoding.

Returning to the compact encoding, we note that an even
x even lattice can avoid parity switching errors altogether by
choosing the appropriate checkerboard pattern of the auxiliary
qubits such that none are placed in corner faces, permitting
only the representation of parity-preserving fermionic opera-
tors. Even x odd and odd x odd lattices always have auxiliary
qubits in two corners and so will always permit Majorana
errors. In a similar fashion to the VC encoding, modifying the
structure of the compact encoding also allows one to avoid
these errors.

If the two corner fermionic sites adjacent to the odd faces
are removed as shown in Fig. 6, then the parity switching
errors correspond to Pauli weight-2 errors—i.e., the single
Majorana or hole operator—has a weight-2 qubit representa-
tion. One can preserve most of the structure of the corner, by
introducing a new diagonal edge operator connecting those
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FIG. 6. Lattice modification to create weight-2 single

Majorana/hole operators. (a) The change in edge operators,
(b) the Majorana/hole operators on the new corner sites. For a
corner face where the arrows are all pointing in the other direction,
the action of the new edge operator and the new Majorana operators
on the vertex qubits will be X.

vertex qubits which had previously been connected to the
removed site. To ensure the correct anticommutation relations,
this new edge operator acts with a Z on the face qubit and will
act with the same Pauli operator on its incident vertex qubits
as the two edge operators bounding the odd face (see Fig. 6).
The cycle operator formed by these three edge operators is the
identity, provided the correct sign convention is chosen for the
diagonal edge.

Single Majorana (or Majorana hole) operators may be
added on either of the sites which were previously adjacent
to the removed corner site, by applying a weight-2 Pauli
operator on the corresponding vertex qubit and on the face
qubit. Note that these operators anticommute with all incident
edge operators and the vertex operator on that site.

A final way to modify the lattice to avoid undetectable
Majorana errors is to introduce periodic boundary conditions.
This yields a uniform periodic lattice if and only if the number
of faces (which equals the number of lattice vertices) is even in
both directions. Note that in this case the code space dimen-
sion is 2Y~1.3 Given such a torus, and by inspection of the
error syndromes in Fig. 5, the following claim is immediately
evident.

Proposition 1. On a torus with an even face count > 4 in
both directions, any two weight-1 Pauli errors are elther com-
pletely detectable; a combination of at most one detectable

3To see this note that two additional nontrivial stabilizers are in-
troduced corresponding to topological cycles, but now the set of
nontrivial face stabilizers is overcomplete, since the product of all
nontrivial face cycles is identity.

error and one fermionic phase noise term; or two weight-1
fermionic phase noise terms.

Proof. In the case of periodic boundary conditions, the
only single-error syndromes are those illustrated in Fig. 5,
with none being truncated at the boundaries. The only pairing
of error syndromes in Fig. 5 that cancel are an X and Y error
on the same vertex qubit, which simply corresponds to a Z
error on a vertex qubit, i.e., fermionic phase noise. |

For a sufficiently large lattice with periodic boundary
conditions, all weight-2 errors either correspond to natural
simulated noise, or are detectable. Clearly then, in the absence
of periodic boundaries, undetectable weight-2 errors that do
not correspond to phase noise must only appear on the bound-
ary of the lattice.

B. Error mitigation in Hamiltonian simulation

As we have seen so far, several types of Pauli weight 1
errors are detectable within the compact encoding. This fact
can be exploited for Hamiltonian simulation to allow for a
higher effective Pauli noise rate, by postselecting on runs
without stabilizer violations, either during or at the end of the
computation. More specifically, let us assume we are given
a fermionic Hamiltonian Hr built from fermionic creation
and annihilation operators, and we can decompose Hp =
» ;Hj such that the support of the H; is disjoint. We wish
to implement a time dynamics simulation of the system via
Trotterization [4]; for instance, for a small time-step §, we
approximate

T/8

T =TT [e™ + 06). (18)

n=0 j

The simulation thus progresses by sequentially applying
unitary operations generated by the H;; as each of them com-
prises only operators that commute with the stabilizers it is
clear that any single stabilizer violation emerging from an
error midway through the simulation will remain detectable
after the simulation finishes. However, in addition to unde-
tectable errors, there now is also the possibility of having the
same stabilizer-violating error on the same site, twice, such
that those errors exactly cancel; or, alternatively, a combi-
nation of multiple errors such that the syndrome patterns in
Fig. 5 line up and cancel exactly.

IV. DISCUSSION

The compact encoding constitutes a significant improve-
ment on both the mode-to-qubit ratio and the Pauli weights of
local operators. For near-term quantum computing hardware,
such gains are essential. See Ref. [8] for an example of how
this encoding can yield significant improvements in quan-
tum simulation algorithms. The design principles outlined for
this encoding can also be applied to other lattice types. In
forthcoming work we consider how the compact encoding
can be applied to various planar and 3D lattices, with similar
improvements on operators weights and qubit to mode ratios.

The error mitigating properties of this encoding are also
particularly relevant for near-term quantum algorithms with
no active error correction or fault tolerance. Since fermionic
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encodings are indispensable for fermionic simulation, they
constitute a significant fixed overhead in representing any
fermionic systems on NISQ devices. One may not be able to
afford any additional overhead for supplementary error detec-
tion. In this context the time scale of any coherent quantum
evolution would have to be upper bounded to ensure that the
probability of an error is < 1. Individual runs might then be
post-selected based on whether errors are detected. Even if
one does have fault tolerance, mitigating a large fraction of
errors already one level above the error-correcting code would
allow a reduction in overhead.

In our discussion of the relationship between the compact
encoding and the toric code, we illustrate how the encoding
condenses specific particle excitations of the toric code into
the code space of the compact encoding. We note that similar
strategies might be applicable to the particle excitations of
other codes.
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APPENDIX A: DETAILS OF LOGICAL QUBIT
OPERATORS IN CASE III

As discussed in the main text, in case (III) the encoded
subspace consists of the full fermionic Fock space plus an
additional logical qubit degree of freedom (F ® C?) and the
square lattice has four corners from each of which either
all incident edges point into or away. Applying an X Pauli
operator at a corner where edges point away (and Y where
edges pointing into) must correspond to applying an en-
coded Majorana or hole operator (h; := y; ]_[k Vi)—as these
are the only fermionic operators satisfying the resulting (anti-
)commutation relations at that site—along with potentially
some additional action on the logical qubit space. We define
the four operators A;, B;, C;, and D;, each corresponding to
a distinct corner, as the application of an X (or Y) at that
corner followed by the application of a sequence of edge
operators from the corner to site i. These operators satisfy
the following (anti-)commutation relations Vi # j and VM #
M € {A,B,C,D}:

{M;, M}} = M, M}] = {M;, M} = 0. (A1)
An assignment of Majorana, hole, and Pauli operators to these
M which satisfy these commutation relations is

Ai=7QI, (A2)

B52E5®X, Cizili®)7, D1:EI®Z (A3)
One can retrieve the isolated logical Pauli operators by taking

the product of select pairs:

CD; =il ®X, (A4)
DB =ilQY, (A5)
BC =il®Z. (A6)

z
° ° ° ° ° ° ° °
X
° ° ° °
z
° ° ° ° ° ° ° °
° °
z
° ° ° ° ° ° ° °
X
° ° .. ..
z
° ° ° ° ° ° ° °
- z z z z
X Y

FIG. 7. The logical X and Y operators on the extra logical qubit
in case (III).

Such products correspond to string-like operations extending
the length of the lattice, from one corner to another. Examples
of these operators are illustrated in Fig. 7. Note that if one
treats one of these operators as a stabilizer, then one restricts
to the full fermionic code space without an extra logical qubit.
In this case, as one should expect, there are only two corners
in which to inject a Majorana, since injecting a Majorana
at either of the other two corners would anticommute with
the chosen stabilizer. These two corners correspond to the
Majorana and its hole counterpart, as in case (I) where there
are only two odd corners.

APPENDIX B: HEXAGONAL LATTICE MAPPING

Hexagonal lattices admit a similar construction to that de-
scribed in the main text for square lattices. Again we follow
the scheme of orienting the edges, introducing ansatz edge
operators with an X at the tail and a Y at the head, and then
introducing interactions on face qubits to satisfy the anticom-
mutation relations.

In the hexagonal lattice every edge, except for the bottom
edge of every face, is oriented clockwise on even columns of
faces and counterclockwise on odd columns, as illustrated in
Fig. 8. This ensures that heads touch tails for all edges except
for the bottom edge of every hexagon. A qubit is introduced
at every face.

° / \ — o

SN N

\_/ LY
N/

FIG. 8. Edge orientation, qubit placement, and edge operators for
the hexagonal lattice mapping.
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For every bottom edge of every face f, the edge operator
acts on the face qubit of f with Y. The two edges adjacent
to this bottom edge and also adjacent to f act on the face
qubit of f with X¢. In this way all anticommutation relations
are satisfied. Just as in the square lattice case, the vertex
operators are Z operators on the vertex qubit. We illustrate
this construction in Fig. 8.

Once again, the stabilizers of this mapping are cycles.
However, in this case there are no trivial cycles, so there is a
stabilizer generator for every face. This implies that the code
space is the full fermionic space. One again, single fermion
operators may be injected into the code at those vertices from
which edges are either uniformly pointing towards or away.
This mapping yields hopping and coulomb terms with Pauli
weight at most 3. With M modes, this mapping uses fewer
than 1.5M qubits.

Similar generalizations may be applied to other lattices.

APPENDIX C: PROOF OF CORRECTNESS OF SQUARE
LATTICE FERMIONIC MAPPINGS

For the sake of completeness we include here a more
explicit proof of our claims. The arguments presented here
should be relatively familiar to those readers acquainted with
fermionic mappings.

Definition 1. A mapping from some Hilbert space H; to
another Hilbert space H, is an isometry4 J:H — H,, as
defined in Ref. [13, Sec. 5].

Let f,, = C™ correspond to an m mode single fermion
Hilbert space. The n fermion Fock space on m modes is
defined as

1 n
A fy = span(a Z sgn(n)®1/fﬂ(,~) VNS fm),

wes, i=1

and the full fermionic Fock space of m modes is F,, =
@D, (A"f). The dimension of F, is 2™. Let FF =
D even (A" fi) and EC = @l (A" f). If m is even the
dimension of F£ is 2m~1.

In the following we denote with L(S) to be the Linear
operators on a space S, which form a C*-algebra in the case
where S is a complex Hilbert space.

Definition 2 (Fermionic Mapping). A fermionic mapping
isanisometry J : F,, —> H, where H is a qubit Hilbert space,
i.e., J satisfies the property J'J = I, .

Proposition 2 ([13]). A *-isomorphism wu : L(H;) —
L(H,) induces an mapping J : H —> H, which is unique up
to a global phase. An operator X € L(H,) is represented via
the map u(X) = JXJ'.

Proposition 3 ([13]). The algebra L(FE) @ L(E?) is gen-
erated by the edge and vertex operators E;; and V;. The algebra
L(F,) is generated by a single Majorana operator y and the
edge and vertex operators Ej and V.

Theorem 2. A square (L; x L) lattice mapping with an
even number of faces ngp = (Ly — 1)(L, — 1) (case I) is a
fermionic mapping J : F,, — £, where m = LiL, and £ C
((CZ)m+np/2.

AT = Iy, and JJ" = Proj[Image(J)].

Proof. The mapping employs m 4 np /2 qubits. The num-
ber of nontrivial stabilizers is ng /2. Let £L C H = (C?)"+m/2
be the joint 41 eigenspace of these nontrivial stabilizers, then
dim(£) = 2" = dim(F,,).

If edge operators Ej; and vertex operators V; satisfy the
anticommutation relations

(Ejir,V;} =0, {Ej,Ej} =0, (CDH
andforalli# j#£m+#n
[Vi.V;1=0, [Ej,V.]=0, [Ej, Eu]=0 (C2)
and loop condition

(Ipl-1)
;(pl=1 1_[ Epp =1, (C3)
i=1

then they generate the even fermionic algebra L(FEZ). To
generate the entire fermionic algebra L(F,,), we need an ad-
ditional generator; for instance a single Majorana operator y;,
which together with a vertex operator V;y; o cx; generates the
entire algebra L(F,,).

By inspection the Pauli operators Ej; and Vj satisfy rela-
tions Egs. (C1) and (C2). Furthermore, since the number of
faces is even there are always exactly two corner faces of the
lattice which are odd according to the checker-board labeling.
Choose a corner vertex c¢, associated with an odd corner face,
and define an encoded Majorana operator

_x.
J/C - YC

Then {770 Ecj} = {370» Ve} = 0. B 5

By inspection we see that Ej, Vi and the additional
Majorana y. commute with the stabilizers of the mapping;
as such, restriction to the joint +1 eigenspace L of the
stabilizers—denoted -|,—retains all their algebraic proper-
ties. Furthermore, the operators £ k| c satisfy Eq. (C3). Thus,
by the same argument as in Ref. [13, Sec. 8], the identification

arrows pointing into corner, or
otherwise.

Eixr— Eile Vir—Vile ver— 7c

extends to a x-homomorphism wu : L(F;,,) — L(L). Since
the CAR algebra is unique up to an isomorphism [22], and
dim(£) = dim(F,,), the mapping is an isomorphism. The
claim follows by Proposition 2. |

Theorem 3. A square (L; x L) lattice mapping with an
odd number of faces np = (L; — 1)(L, — 1), and an extra
even face (case II) describes an mapping J : F£ — £, where
m=1LiL,and L C ((CZ)m-H_nF/ZJ'

Proof. The mapping employs m + |ng/2] qubits. The
number of nontrivial stabilizers is [np/2]. Let L C
(C?yn+1ne/2] be the +1 eigenspace of the nontrivial stabi-
lizers, then dim(L) = 27+ /21=1n/21 — 20n=D) " Since np is
odd, it must be the case that L; — 1 and L, — 1 are odd, and
so m is even. Thus, dim(an) =2""1 = dim(L).

LFEY o L(Fmo ) is generated by E;; and V;. However, under
the algebraic constraint that [ ; V; = I, the algebra only gen-
erates L(F,f). Thus, we have a mapping u : L(Ef) — L(L)
by u(k;;) = E,-j|ﬁ and u(V;) = Vi .. By a similar argument
to the previous theorem, p is a *-isomorphism, and therefore
specifies an mapping J : FE — L. [ |
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Theorem 4. A square (L; x L) lattice mapping with an
odd number of faces np = (Ly — 1)(L, — 1), and an extra
odd face (case III), is a fermionic mapping J : C> ® F,, — L,
where m = L1L, and £ C (C?)"+[ne/21,

Proof. The mapping employs m + [np/2] qubits. The
number of nontrivial stabilizers is |[ng/2]. Let L C
(C2yn+ne/21 be the +1 eigenspace of the nontrivial stabiliz-
ers, then dim(L£) = 20"+ = dim(C? ® FE).

There are four corner faces of the lattice which are odd
according to the checker-board labeling. One may choose a
corner vertex ¢ and define an encoded operator acting triv-
ially on the logical qubit, and as a Majorana on the logical
fermionic space: I ® 7. = X, or ¥, depending on if the arrows
point into or, respectively, away from that corner. The other
three corners, which we label c,, ¢y, c;, may then be defined as
logical Pauli operators combined with logical hole operators:

X® flcx =X, orY.,,
Y ® fzcy =X, orl,
Z® BC: =X, orY. .

Here the choice of which corners to associate with which
logical Paulis is a matter of convention, and the choice of X or
Y will again depend on if the arrows point into or, respectively,
away from that corner.

By Proposition 3, the operators [ ® y;, X ® hjandY ® A;,
along with the edge and vertex operators, generate L(C? ®
F,)). Define the mapping 1 : L(C*> ® F,,) — L(£) by pn(I ®
¥e) =1 ® 7. etc. By a similar argument to the previous
theorems, w is a *-isomorphism, and therefore specifies an
mapping J : C2® F,, — L. [ |

APPENDIX D: DERIVATION OF FERMIONIC
PHASE NOISE

To illustrate the fact that phase noise can be considered
natural fermionic noise, we present a derivation of fermionic
phase noise for a natural fermionic system. Here we consider
a fermionic lattice model coupled to a bosonic system, for
example phonons on the lattice. The interaction is mediated
through the transfer of momentum; a coupling known as Froh-
lich Hamiltonian [23,24], which reads

H:=2 " 84lq,akolbg +by). (D)
ko q

Assume for simplicity a momentum-independent coupling
& =8:= 1. A Fourier transform of the fermionic and
bosonic operators yields

H =) Ne(bx+Db)), (D2)

3A more sophisticated and realistic analysis could be performed
for a momentum-dependent coupling but is beyond the scope of this

paper.

where Ny = ) Ny, and Ny, is the fermionic number opera-
tor for spin o € {1, |} on site X. Given an interaction strength
v, the interaction unitary is U := e~ 7#

The effective channel on the spin-up fermionic system is
then given by

Alpry) = Trg 7, [U(pry ® Ir, ® pp)U ]

I is the maximally mixed state on the spin-down fermionic
system, and pp is a finite temperature Gibbs state with inverse
temperature S on the bosonic system, which we assumed to
be in a completely thermalized bath configuration. Expanding
in the Fock basis [m) of B and |n) of F| we retrieve

(D3)

B

1
A(p}'T)Z_ Z T nm;n/m’p}'TUmer;nma

D4
o (D4)

nn’ mm’

where d | denotes the dimension of the fermionic spin down
subsystem and Upmam = (n, m|U|n’, m’) is an operator act-
ing on the fermionic spin up sector. We note that for a bosonic
Fock state (m|H|m) = 0, such that a second order expansion
in y yields

Alprt) = O(*) + pry

2 —BIm'|
Y e
+ _— —H ' /IO]: Hr /;
d}'i n§n, 7 nm;n'm MIn'm’;nm
mm’
2 —f|m|
Y e
- ([Hz]nm;nmpr
25, = Z

+ pFry [Hz]nm;nm)~ (D5)

Expanding H and isolating bosonic terms:
Alpry) = O + pry

2
+ dyz > T (B)INe ) o7 (0 [Ny )

nn
xx’

- 25; Z Qux (B)((0[NeNy ) 11
+ o1 (0 NeNg I)1), (D6)
where
Fw(B) =Y e (m|(by + b))|m’) (m'|(by + b],)m)
and
QB 1= 3 ml(hy + B by + Bim) D7)
3 (b + 5L lm) m (b + By S
_ rup) (DY)
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Noting that I'yy (B8) = Sxx I'sx(B) = T'(B)dxx, We get

d

)/2

2
Alpr) = O + pry + %F(ﬁ)z (mINy ') o1 (0[N Im) — =2 —T(8) Y (INZ[m)pry + oy (MINZm). (DY)

X

2dr,

Given that we only work in a fermionic Fock basis |n) on the spin-down sector, we have

(n|Ny|n') = (Nyy + [n]x)8nw, (D10)
where [n]y is the xth element of the vector n. We therefore retrieve
e
Alprt) = OG) + prr + gr(ﬂ)Z(NX,T + [nl)p 71 (Ny, 1 + [n]y)
1 nx
2
Y
-3 dﬂf(ﬂ)Z(Nx,T +nl)’0rt + prt Nyt + [n]c). (D11)
nx

Noting that Y [n]x = dr,/2 (as we sum over all possible configurations; and a mode is occupied half of the time) and

> Wxp + n]y)? = dr(2Nxs + 1/2) and expanding terms yields

1 1
Alprr) = OW) + pry + v’ T(B) Z (NX,TPJ-'TNX,T + 5 Warors + pFilNat) + EPH>

T'(B)
— L Y@ + 1/2)pt + Pt (2N +1/2) (D12)
3 2 1
=0+ pr1 + 7 TB) Y Nerories = 5 (Narprs + p7iNet) ). (D13)
X
Substituting the phase operator ¢yy := (1 — 2Ny ) yields
2 2
y T(BM y T(BM 1
Aprr) = <1 i Lo + 1 Z M¢x,¢ﬁf¢¢x,¢, (D14)
X

where M is the number of modes.
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