4,193 research outputs found

    The role of fracture mechanics in the design of fuel tanks in space vehicles

    Get PDF
    With special reference to design of fuel tanks in space vehicles, the principles of fracture mechanics are reviewed. An approximate but extremely simple relationship is derived among the operating stress level, the length of crack, and the number of cycles of failure. Any one of the variables can be computed approximately from the knowledge of the other two, if the loading schedule (mission of the tank) is not greatly altered. Two sample examples illustrating the procedures of determining the allowable safe operating stress corresponding to a set of assumed loading schedule are included. The selection of sample examples is limited by the relatively meager available data on the candidate material for various stress ratios in the cycling

    Geostationary platform structural system

    Get PDF
    A discussion is presented on the following engineering considerations for a geostationary platform: (1) structural configuration and design, (2) thermal characteristics, (3) flight load considerations and (4) assembly approaches

    Charge Renormalization, Effective Interactions, and Thermodynamics of Deionized Colloidal Suspensions

    Full text link
    Thermodynamic properties of charge-stabilised colloidal suspensions depend sensitively on the effective charge of the macroions, which can be substantially lower than the bare charge in the case of strong counterion-macroion association. A theory of charge renormalization is proposed, combining an effective one-component model of charged colloids with a thermal criterion for distinguishing between free and associated counterions. The theory predicts, with minimal computational effort, osmotic pressures of deionized suspensions of highly charged colloids in close agreement with large-scale simulations of the primitive model.Comment: 15 pages, 7 figure

    Regulation of protein kinase B and glycogen synthase kinase-3 by insulin and beta-adrenergic agonists in rat epididymal fat cells - Activation of protein kinase B by wortmannin-sensitive and -insensittve mechanisms

    Get PDF
    Previous studies using L6 myotubes have suggested that glycogen synthase kinase-3 (GSK-3) is phosphoryl ated and inactivated in response to insulin by protein kinase B (PKB, also known as Akt or RAG) (Cross, D, A, E., Alessi, D, R., Cohen, P., Andjelkovic, M., and Hemmings, B, A. (1995) Nature 378, 785-789), In the present study, marked increases in the activity of PKB have been shown to occur in insulin-treated rat epididymal fat cells with a time course compatible with the observed decrease in GSK-3 activity, Isoproterenol, acting primarily through beta(3)-adrenoreceptors, was found to decrease GSK-3 activity to a similar extent (approximately 50%) to insulin, However, unlike the effect of insulin, the inhibition of GSK by isoproterenol was not found to be sensitive to inhibition by the phosphatidylinositol 3'-kinase inhibitors, wortmannin or LY 294002, The change in GSK-3 activity brought about by isoproterenol could not be mimicked by the addition of permeant cyclic AMP analogues or forskolin to the cells, although at the concentrations used, these agents were able to stimulate lipolysis. Isoproterenol, but again not the cyclic AMP analogues, was found to increase the activity of PKB, although to a lesser extent than insulin. While wortmannin abolished the stimulation of PKB activity by insulin, it was without effect on the activation seen in response to isoproterenol, The activation of PKB by isoproterenol was not accompanied by any detectable change in the electrophoretic mobility of the protein on SDS-polyacrylamide gel electrophoresis. It would therefore appear that distinct mechanisms exist for the stimulation of PKB by insulin and isoproterenol in rat fat cells

    Power Balance in Aerodynamic Flows

    Get PDF
    A control volume analysis of the compressible viscous flow about an aircraft is performed,including integrated propulsors and flow control systems. In contrast to most past analyses which have focused on forces and momentum flow, in particular thrust and drag, the present analysis focuses on mechanical power and kinetic energy flow. The result is a clear identification and quantification of all the power sources, power sinks, and their interactions which are present in any aerodynamic flow. The formulation does not require any separate definitions of thrust and drag, and hence it is especially useful for analysis and optimization of aerodynamic configurations which have tightly integrated propulsion and boundary layer control systems

    New genus of Late Cretaceous angel shark

    Get PDF
    29 pages : illustrations ; 26 cm.Three-dimensional Late Cretaceous elasmobranch endoskeletal elements (including palatoquadrates, ceratohyals, braincase fragments, and a series of anterior vertebrae) are described from the Late Cretaceous University of Alabama Harrell Station Paleontological Site (HSPS), Dallas County, Alabama. The material is referred to the extant elasmobranch Family Squatinidae on the basis of several distinctive morphological features. It also exhibits features not shared by any modern or fossil Squatina species or the extinct Late Jurassic squatinid Pseudorhina. A new genus and species is erected, despite there being some uncertainty regarding potential synonymy with existing nominal species previously founded on isolated fossil teeth (curiously, no squatinid teeth have been documented from the HSPS). A preliminary phylogenetic analysis suggests that the new genus falls on the squatinid stem, phylogenetically closer to Squatina than Pseudorhina. The craniovertebral articulation in the new genus exhibits features considered convergent with modern batomorphs (skates and rays), including absence of contact between the posterior basicranium and first vertebral centrum, and a notochordal canal which fails to reach the parachordal basicranium. Supporting evidence that similarities in the craniovertebral articulation of squatinoids and batomorphs are convergent rather than synapomorphic (as "hypnosqualeans") is presented by an undescribed Early Jurassic batomorph, in which an occipital hemicentrum articulates with the first vertebral centrum as in all modern sharklike (selachimorph) elasmobranchs. The fossil suggests instead that the batomorph synarcual evolved by fusion of the anterior basiventral and basidorsal cartilages prior to the reduction of the anterior centra and loss of the occipital hemicentrum, not afterward as predicted by the hypnosqualean hypothesis

    Are characiform Fishes Gondwanan in Origin? Insights from a Time-Scaled Molecular Phylogeny of the Citharinoidei (Ostariophysi: Characiformes)

    Full text link
    Fishes of the order Characiformes are a diverse and economically important teleost clade whose extant members are found exclusively in African and Neotropical freshwaters. Although their transatlantic distribution has been primarily attributed to the Early Cretaceous fragmentation of western Gondwana, vicariance has not been tested with temporal information beyond that contained in their fragmentary fossil record and a recent time-scaled phylogeny focused on the African family Alestidae. Because members of the suborder Citharinoidei constitute the sister lineage to the entire remaining Afro-Neotropical characiform radiation, we inferred a time-calibrated molecular phylogeny of citharinoids using a popular Bayesian approach to molecular dating in order to assess the adequacy of current vicariance hypotheses and shed light on the early biogeographic history of characiform fishes. Given that the only comprehensive phylogenetic treatment of the Citharinoidei has been a morphology-based analysis published over three decades ago, the present study also provided an opportunity to further investigate citharinoid relationships and update the evolutionary framework that has laid the foundations for the current classification of the group. The inferred chronogram is robust to changes in calibration priors and suggests that the origins of citharinoids date back to the Turonian (ca 90 Ma) of the Late Cretaceous. Most modern citharinoid genera, however, appear to have originated and diversified much more recently, mainly during the Miocene. By reconciling molecular-clock- with fossilbased estimates for the origins of the Characiformes, our results provide further support for the hypothesis that attributes the disjunct distribution of the order to the opening of the South Atlantic Ocean. The striking overlap in tempo of diversification and biogeographic patterns between citharinoids and the African-endemic family Alestidae suggests that their evolutionary histories could have been strongly and similarly influenced by Miocene geotectonic events that modified the landscape and produced the drainage pattern of Central Africa seen today

    Stability of Colloidal Quasicrystals

    Full text link
    Freezing of charge-stabilized colloidal suspensions and relative stabilities of crystals and quasicrystals are studied using thermodynamic perturbation theory. Macroion interactions are modelled by effective pair potentials combining electrostatic repulsion with polymer-depletion or van der Waals attraction. Comparing free energies -- counterion terms included -- for elementary crystals and rational approximants to icosahedral quasicrystals, parameters are identified for which one-component quasicrystals are stabilized by a compromise between packing entropy and cohesive energy.Comment: 6 pages, 4 figure
    corecore