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STRUCTURAL CONFIGURATION (Figure 1)

The Geostationary Platform configuration under consideration
is shown in the following chart. A tetrahedron structural geometry
was selected to provide inherent structural efficiency, all rigid
members, and a compact arrangement of node points to which the
antennae are mounted. RCS propulsion modules are located on out-
riggers at each of the four corners of the structural platform, and
solar arrays are located at either end. The largest antenna, 30 meters
in diameter, is centrally located to maintain symetry in weight

distribution.
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STRUCTURAL SYSTEM DESIGN OPTIONS (Figure 2)

An erectable structure design approach is currently preferred
to a deployable system to minimize the number of STS launches
required. Although a deployable structure would minimize the assembly
tasks required, design concepts with competitive packaging densities
and adequate member sizes are not currently available. A structural
design approach, which utilizes the best features of both space fabricated
ard prefabricated structural members in an erectable system, is currently

being evaluated.
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STRUCTURAL SYSTEM DESIGN CONCEPT (Figure 3; Figure 4)

The current structural system design approach for the Geo-
stationary Platform is shown in the following two charts. Aluminum
space fabricated beams, with a 1 meter cross-sectional depth, are
utilized for the continuous longitudinal members. Graphite/epoxy
prefabricated members, of the nested tapered tube type, are used
for the interconnecting lateral and diagonal members. A node point
spacing of 9 meters was selected to provide adequate separation of
the various antennae mounted on the platform. In order to provide
load paths aligned with the triangular cross -section of the space-fabricated
beams, the tetrahedron geometry deviates from an equilateral tetrahedron

to one which is offset, having one member 7.8 meters in length.
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SPACE-FABRICATED BEAM DESIGN (Figure 5)

The design characteristics of the space fabricated beams
utilized in the platform are shown. This design is taken from the
Space Fabrication Demonstration System contract, currently in
progress at Grumman Aerospace Corporation, which will produce
a ground prototype metallic beam builder. The terminating tripod
end fitting as shown would not be used for this platform structural

concept.
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SPACE FABRICATED BEAM JOINT CONCEPT (Figure 6)

Since the space fabricated beams used in the platform structure
are continuous in length, a joint concept is required to interconnect the
lateral and diagonal members at each 9 meters of beam span. The saddle
clamp joint concept shown on the following chart is a design approach to
provide strut connections external to the 1 meter beam and to minimize
the required volume of the joint. The joint indexes with the V-hat section
of the beam lateral members and is installed in one piece. The joint
also provides an interface for installation of an appropriate antenna
support adapter. As a compromise to reduce the joint size, strut loads
are introduced into the beam eccentric to the beam neutral axis. To
introduce loads at the neutral axis, either an internal joint concept would

be required, or one of excessive size.
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BEAM CAP MEMBER THERMAL CHARACTERISTICS (Figure 7)

The Geostationary Platform is oriented toward the Earth with
its longitudinal axis perpendicular to the orbit plane, and since the
space fabricated beams are parallel to this axis, they have similar
thermal environments. The following chart indicates the temperature
history of the cap members of the beams of the lower surface of the
platform. The upper surface beams have a similar temperature history,
but with a 4-hour phase shift due to a 30° difference in orientation to the
sun. The cyclic change in temperature is due to the change in projected
area of the cap member to the sun with change in orbit position. The
peak temperature occurs with alignment of the open cavity of the cap

member to the sun which has the effect of increasing absorptivity.
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BEAM CAP MEMBER SHADING EFFECTS (Figure 8)

Shading of the cap members of the space fabricated beam
occurs when two members are co-aligned with the sun. This
occurs twice per orbit for each cap member with a duration of
24.4 minutes. The following chart indicates the change in solar

heat load during the shading period.
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PLATFORM STRUCTURE TEMPERATURE HISTORY (Figure 9)

The following chart indicates the composite temperature
history of the space fabricated beams contained in the platform
structure. Also shown is the structural temperature change
during maximum solar occultation duration, which occurs during
the twice yearly equinox periods. These data are to be utilized to
evaluate thermal distortion and thermal stress occurring in the

structure.
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SEASONAL TEMPERATURE VARIATION (Figure 10)

Due to change in angle between the orbit plane and sun
line (#) during the year and corresponding change in absorbed
solar flux, the structural temperature will vary as indicated in
the following chart. This has the effect of raising and lowering

the temperature history as shown on the preceding chart .
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TRANSFER STAGE THRUST LOAD INTRODUCTION (Figure 11)

Options for the introduction of thrust loads into the platform
structure are as indicated in the following chart. In each case, com-
ponents which are not location critical, such as batteries and reaction
wheels, are located in a subsystems module to preclude introducing
their acceleration load into the platform structure. Although the
centrally located thrust introduction point produces somewhat higher
structural member loads than the other options, it is currently
preferred due to additional design features made possible, such as
providing a large rigid interface for the 30-meter-diameter antenna,

and use as a support structure for component mounting during

Orbiter flight.
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SUBSYSTEM MODULE DESIGN CONCEPT (Figure 12)

A design concept of a subsystem module which provides a
docking interface for the OTV propulsion stage is shown. It inter-
faces with the structural members of the platform as shown, and
provides a central location for initiation of structural assembly.

As indicated, an interface for the 30-meter-diameter antenna is
provided which can also be used for launch support of the antenna

in its packaged form. The concept also provides the launch support
structure for many of the platform components including prefabricated
nested tapered tube structural members, RCS modules, and solar
arrays. The internal volume can also potentially be utilized for

additional component structural support during launch.
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STRUCTURAL MEMBER LOADS DURING ORBIT TRANSFER (Figure 13)

Based upon OTV characteristics as indicated, resulting accelera-
tions and corresponding average loads applied to the space fabricated
longitudinal members are shown. Where a 50-percent engine throttle
capability is utilized, applied loads exceed the capability of the current
member design from the Grumman Aerospace '"Space Fabrication Demon-

stration System'' contract, which is used as a baseline.
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OPTIONS FOR STRUCTURAL LOAD COMPATIBILITY (Figure

Potential options for meeting structural load requirements
are as indicated. Unless structural weight becomes highly critical,
the more desirable option would be to increase structural member

load capability by increasing material thickness.

14)
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STRUCTURAL SYSTEM MEMBER REQUIREMENTS (Figure 15)

The required structural members of the platform system

are summarized as indicated.
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ASSEMBLY-PREPARATION OF SPACE FABRICATED BEAM (Figure 16)

A major feature resulting from use of space fabricated beams
is the capability to preassemble many of the system components, such
as antennas, cables, and joints, to the beam prior to inclusion of the
member into the structural assembly. By means of an erected work
platform over the beam builder, a suitable astronaut work site can
be provided for installation of these components, and eliminates the need

for individual transport to the structural assembly area and any special

equipment just for installation.
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Construction Facility Concept (Figure 17:Figure 18)

The following two charts illustrate a typical concept of a construc-
tion facility which can be utilized for assembly of the Geostationary
Platform. The concept is based upon a buildup of STS delivered modules
and use of expended Shuttle External Tanks as a "strongback" platform.
The concept would make major use of large ET mounted manipulator arms
as the primary means of transport and positioning of components of the
Geostationary Platform during assembly. The 25 kW Power Module is
utilized to extend the Orbital stay time of the Orbiter and to provide

power to the facility.
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platform Assembly From Orbiter (Figure 19)

The relatively modest size of the Geostationary Platform leads
to the potential of assembly from the Orbiter with a minimum of
support equipment. The following chart illustrates the relative size
of the Geostationary Platform to the Orbiter and indicates a module
that can be utilized to interface the 25 kW Power Module and provide
a rotating support fixture for assembly of the platform. Required
assembly equipment, needed for transport and positioning of members
and components during assembly, are not shown and are subject to
results of further studies involving comparative evaluation of capabil-
ities utilizing EVA, teleoperator or manned maneuvering systems, and

large manipulator arms.
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Neutral Buoyancy Tank Simulation of Assembly Tasks
(Figure 20;Figure 21; Figure 22)

MSFC has conducted several advanced studies over the past 3 years
which involved the assembly of large space structures. Two questions
which were considered high priority are related to transporting
structural beams in space and man's ability to connect the beams
together. MSFC initiated a test program in its neutral buoyancy tank
last spring (1977) to develop answers to these and other fundamental
assembly questions. The following three photographs are from tests
conducted to evaluate the feasibility of moving beams by man, the
Shuttle attached manipulator arm, and by a manned maneuvering system.
It is interesting to note that, for the test article indicated, an
average of approximately 10 minutes was required to manually transport,
position, and attach each beam to another,by using a simple spring-

loaded male/female connector.



Figure 20






