4,141 research outputs found

    Dynamic Normalization for Compact Binary Coalescence Searches in Non-Stationary Noise

    Get PDF
    The output of gravitational-wave interferometers, such as LIGO and Virgo, can be highly non-stationary. Broadband detector noise can affect the detector sensitivity on the order of tens of seconds. Gravitational-wave transient searches, such as those for colliding black holes, estimate this noise in order to identify gravitational-wave events. During times of non-stationarity we see a higher rate of false events being reported. To accurately separate signal from noise, it is imperative to incorporate the changing detector state into gravitational-wave searches. We develop a new statistic which estimates the variation of the interferometric detector noise. We use this statistic to re-rank candidate events identified during LIGO-Virgo's second observing run by the PyCBC search pipeline. This results in a 7% improvement in the sensitivity volume for low mass binaries, particularly binary neutron stars mergers

    Assessment of the severity of unsteady Mach number effects in a 3-stage transonic compressor

    Get PDF
    In this paper results from steady and unsteady CFD simulations of an industrial transonic compressor are compared, in order to gain a better understanding of the cause of the differences in the predicted efficiencies between the steady and unsteady simulations. Initially the first stage is simulated as an isolated compressor stage with inlet guide vanes in order to analyse the effect of individual blade rows on the stage performance. It is found that the rotor efficiency is lower for steady simulations than for unsteady simulations due to stronger shock waves. The stator efficiency is greater in the steady simulations due to not being able to model the interaction of the rotor wakes with the stator blade leading edge and boundary layers. Greater variation between steady and unsteady predictions is found at higher operating speeds. In the 3-stage unsteady simulations, the front stage efficiency characteristic is the same as the efficiency calculated from the isolated unsteady simulations. This shows that the unsteady pressure potential propagating from the downstream stages has no significant effect on the front stage efficiency meaning that the designer does not need to give great consideration to the downstream blade rows when predicting the characteristics of the front stage.</jats:p

    Evaluation of a novel assay for detection of the fetal marker RASSF1A: facilitating improved diagnostic reliability of noninvasive prenatal diagnosis

    Get PDF
    BackgroundAnalysis of cell free fetal (cff) DNA in maternal plasma is used routinely for non invasive prenatal diagnosis (NIPD) of fetal sex determination, fetal rhesus D status and some single gene disorders. True positive results rely on detection of the fetal target being analysed. No amplification of the target may be interpreted either as a true negative result or a false negative result due to the absence or very low levels of cffDNA. The hypermethylated RASSF1A promoter has been reported as a universal fetal marker to confirm the presence of cffDNA. Using methylation-sensitive restriction enzymes hypomethylated maternal sequences are digested leaving hypermethylated fetal sequences detectable. Complete digestion of maternal sequences is required to eliminate false positive results.MethodscfDNA was extracted from maternal plasma (n = 90) and digested with methylation-sensitive and insensitive restriction enzymes. Analysis of RASSF1A, SRY and DYS14 was performed by real-time PCR.ResultsHypermethylated RASSF1A was amplified for 79 samples (88%) indicating the presence of cffDNA. SRY real time PCR results and fetal sex at delivery were 100% accurate. Eleven samples (12%) had no detectable hypermethylated RASSF1A and 10 of these (91%) had gestational ages less than 7 weeks 2 days. Six of these samples were male at delivery, five had inconclusive results for SRY analysis and one sample had no amplifiable SRY.ConclusionUse of this assay for the detection of hypermethylated RASSF1A as a universal fetal marker has the potential to improve the diagnostic reliability of NIPD for fetal sex determination and single gene disorders

    The Late Time Behavior of False Vacuum Decay: Possible Implications for Cosmology and Metastable Inflating States

    Full text link
    We describe here how the late time behavior of the decaying states, which is predicted to deviate from an exponential form, while normally of insignificant consequence, may have important cosmological implications in the case of false vacuum decay. It may increase the likelihood of eternal inflation, and may help explain the likelihood of observing a small vacuum energy at late times, as well as arguing against decay into a large negative energy (anti-de Sitter space), vacuum state as has been motivated by some string theory considerations. Several interesting open questions are raised, including whether observing the cosmological configuration of a metastable universe can constrain its inferred lifetime.Comment: 4 pages, submitted to PRL, one reference changed, and changes to abstract and concluding sentences to stem possible confusions regarding observation and metastabilit

    Paracrine IL-2 Is Required for Optimal Type 2 Effector Cytokine Production

    Get PDF
    IL-2 is a pleiotropic cytokine that promotes the differentiation of Th cell subsets, including Th1, Th2, and Th9 cells, but it impairs the development of Th17 and T follicular helper cells. Although IL-2 is produced by all polarized Th subsets to some level, how it impacts cytokine production when effector T cells are restimulated is unknown. We show in this article that Golgi transport inhibitors (GTIs) blocked IL-9 production. Mechanistically, GTIs blocked secretion of IL-2 that normally feeds back in a paracrine manner to promote STAT5 activation and IL-9 production. IL-2 feedback had no effect on Th1- or Th17-signature cytokine production, but it promoted Th2- and Th9-associated cytokine expression. These data suggest that the use of GTIs results in an underestimation of the presence of type 2 cytokine-secreting cells and highlight IL-2 as a critical component in optimal cytokine production by Th2 and Th9 cells in vitro and in vivo

    Extinction debt on reservoir land-bridge islands

    Get PDF
    Large dams cause extensive inundation of habitats, with remaining terrestrial habitat confined to highly fragmented archipelagos of land-bridge islands comprised of former hilltops. Isolation of biological communities on reservoir islands induces local extinctions and degradation of remnant communities. “Good practice” dam development guidelines propose using reservoir islands for species conservation, mitigating some of the detrimental impacts associated with flooding terrestrial habitats. The degree of species retention on islands in the long-term, and hence, whether they are effective for conservation is currently unknown. Here, we quantitatively review species' responses to isolation on reservoir islands. We specifically investigate island species richness in comparison with neighbouring continuous habitat, and relationships between island species richness and island area, isolation time, and distance to mainland and to other islands. Species' responses to isolation on reservoir islands have been investigated in only 15 of the > 58,000 large-dam reservoirs (dam height > 15m) operating globally. Research predominantly originates from wet tropical forest habitats and focuses on mammals, with species richness being the most widely-reported ecological metric. Terrestrial taxa are, overall, negatively impacted by isolation on reservoir islands. Reservoir island species richness declines with isolation time, and although the rate of loss is slower on larger islands, all islands exhibit depauperate species richness < 100 years after isolation, compared to continuous mainland habitats. Such a pattern of sustained and delayed species loss following large-scale habitat disturbance is indicative of an extinction debt existing for reservoir island species: this pattern is evident across all taxonomic groups and dams studied. Thus, reservoir islands cannot reliably be used for species conservation as part of impact mitigation measures, and should instead be included in area calculations for land impacted by dam creation. Environmental licensing assessments as a precondition for future dam development should explicitly consider the long-term fate of island communities when assessing biodiversity loss vs energy output

    Constraining the time variation of the coupling constants from cosmic microwave background: effect of \Lambda_{QCD}

    Full text link
    We investigate constraints on the time variation of the fine structure constant between the recombination epoch and the present epoch, \Delta\alpha/\alpha \equiv (\alpha_{rec} - \alpha_{now})/\alpha_{now}, from cosmic microwave background (CMB) taking into account simultaneous variation of other physical constants, namely the electron mass m_{e} and the proton mass m_{p}. In other words, we consider the variation of Yukawa coupling and the QCD scale \Lambda_{QCD} in addition to the electromagnetic coupling. We clarify which parameters can be determined from CMB temperature anisotropy in terms of singular value decomposition. Assuming a relation among variations of coupling constants governed by a single scalar field (the dilaton), the 95% confidence level (C.L.) constraint on \Delta\alpha/\alpha is found to be -8.28 \times 10^{-3} < \Delta\alpha/\alpha < 1.81 \times 10^{-3}, which is tighter than the one obtained by considering only the change of \alpha and m_{e}. We also obtain the constraint on the time variation of the proton-to-electron mass ratio \mu \equiv m_{p}/m_{e} to be -0.52 < \Delta\mu/\mu < 0.17 (95% C.L.) under the same assumption. Finally, we also implement a forecast for constraints from the PLANCK survey.Comment: 25 pages, 4 figures; references adde

    Analysis of monotonic greening and browning trends from global NDVI time-series

    Full text link
    Remotely sensed vegetation indices are widely used to detect greening and browning trends; especially the global coverage of time-series normalized difference vegetation index (NDVI) data which are available from 1981. Seasonality and serial auto-correlation in the data have previously been dealt with by integrating the data to annual values; as an alternative to reducing the temporal resolution, we apply harmonic analyses and non-parametric trend tests to the GIMMS NDVI dataset (1981-2006). Using the complete dataset, greening and browning trends were analyzed using a linear model corrected for seasonality by subtracting the seasonal component, and a seasonal non-parametric model. In a third approach, phenological shift and variation in length of growing season were accounted for by analyzing the time-series using vegetation development stages rather than calendar days. Results differed substantially between the models, even though the input data were the same. Prominent regional greening trends identified by several other studies were confirmed but the models were inconsistent in areas with weak trends. The linear model using data corrected for seasonality showed similar trend slopes to those described in previous work using linear models on yearly mean values. The non-parametric models demonstrated the significant influence of variations in phenology; accounting for these variations should yield more robust trend analyses and better understanding of vegetation trends
    • …
    corecore