4 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Sensitivity of the Natriuretic Peptide/cGMP System to Hyperammonaemia in Rat C6 Glioma Cells and GPNT Brain Endothelial Cells

    No full text
    C-type natriuretic peptide (CNP) is the major natriuretic peptide of the central nervous system and acts via its selective guanylyl cyclase-B (GC-B) receptor to regulate cGMP production in neurons, astrocytes and endothelial cells. CNP is implicated in the regulation of neurogenesis, axonal bifurcation, as well as learning and memory. Several neurological disorders result in toxic concentrations of ammonia (hyperammonaemia), which can adversely affect astrocyte function. However, the relationship between CNP and hyperammonaemia is poorly understood. Here, we examine the molecular and pharmacological control of CNP in rat C6 glioma cells and rat GPNT brain endothelial cells, under conditions of hyperammonaemia. Concentration-dependent inhibition of C6 glioma cell proliferation by hyperammonaemia was unaffected by CNP co-treatment. Furthermore, hyperammonaemia pre-treatment (for 1 h and 24 h) caused a significant inhibition in subsequent CNP-stimulated cGMP accumulation in both C6 and GPNT cells, whereas nitric-oxide-dependent cGMP accumulation was not affected. CNP-stimulated cGMP efflux from C6 glioma cells was significantly reduced under conditions of hyperammonaemia, potentially via a mechanism involving changed in phosphodiesterase expression. Hyperammonaemia-stimulated ROS production was unaffected by CNP but enhanced by a nitric oxide donor in C6 cells. Extracellular vesicle production from C6 cells was enhanced by hyperammonaemia, and these vesicles caused impaired CNP-stimulated cGMP signalling in GPNT cells. Collectively, these data demonstrate functional interaction between CNP signalling and hyperammonaemia in C6 glioma and GPNT cells, but the exact mechanisms remain to be established

    Evolution over Time of Ventilatory Management and Outcome of Patients with Neurologic Disease∗

    No full text
    OBJECTIVES: To describe the changes in ventilator management over time in patients with neurologic disease at ICU admission and to estimate factors associated with 28-day hospital mortality. DESIGN: Secondary analysis of three prospective, observational, multicenter studies. SETTING: Cohort studies conducted in 2004, 2010, and 2016. PATIENTS: Adult patients who received mechanical ventilation for more than 12 hours. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among the 20,929 patients enrolled, we included 4,152 (20%) mechanically ventilated patients due to different neurologic diseases. Hemorrhagic stroke and brain trauma were the most common pathologies associated with the need for mechanical ventilation. Although volume-cycled ventilation remained the preferred ventilation mode, there was a significant (p < 0.001) increment in the use of pressure support ventilation. The proportion of patients receiving a protective lung ventilation strategy was increased over time: 47% in 2004, 63% in 2010, and 65% in 2016 (p < 0.001), as well as the duration of protective ventilation strategies: 406 days per 1,000 mechanical ventilation days in 2004, 523 days per 1,000 mechanical ventilation days in 2010, and 585 days per 1,000 mechanical ventilation days in 2016 (p < 0.001). There were no differences in the length of stay in the ICU, mortality in the ICU, and mortality in hospital from 2004 to 2016. Independent risk factors for 28-day mortality were age greater than 75 years, Simplified Acute Physiology Score II greater than 50, the occurrence of organ dysfunction within first 48 hours after brain injury, and specific neurologic diseases such as hemorrhagic stroke, ischemic stroke, and brain trauma. CONCLUSIONS: More lung-protective ventilatory strategies have been implemented over years in neurologic patients with no effect on pulmonary complications or on survival. We found several prognostic factors on mortality such as advanced age, the severity of the disease, organ dysfunctions, and the etiology of neurologic disease
    corecore