4 research outputs found
Optical Structure and Proper-Motion Age of the Oxygen-rich Supernova Remnant 1E 0102-7219 in the Small Magellanic Cloud
We present new optical emission-line images of the young SNR 1E 0102-7219
(E0102) in the SMC obtained with the HST Advanced Camera for Surveys (ACS).
E0102 is a member of the oxygen-rich class of SNRs showing strong oxygen, neon
, and other metal-line emissions in its optical and X-ray spectra, and an
absence of H and He. The progenitor of E0102 may have been a Wolf-Rayet star
that underwent considerable mass loss prior to exploding as a Type Ib/c or
IIL/b SN. The ejecta in this SNR are fast-moving (V > 1000 km/s) and emit as
they are compressed and heated in the reverse shock. In 2003, we obtained
optical [O III], H-alpha, and continuum images with the ACS Wide Field Camera.
The [O III] image captures the full velocity range of the ejecta, and shows
considerable high-velocity emission projected in the middle of the SNR that was
Doppler-shifted out of the narrow F502N bandpass of a previous Wide Field and
Planetary Camera 2 image from 1995. Using these two epochs separated by ~8.5
years, we measure the transverse expansion of the ejecta around the outer rim
in this SNR for the first time at visible wavelengths. From proper-motion
measurements of 12 ejecta filaments, we estimate a mean expansion velocity for
the bright ejecta of ~2000 km/s and an inferred kinematic age for the SNR of
\~2050 +/- 600 years. The age we derive from HST data is about twice that
inferred by Hughes et al.(2000) from X-ray data, though our 1-sigma error bars
overlap. Our proper-motion age is consistent with an independent optical
kinematic age derived by Eriksen et al.(2003) using spatially resolved [O III]
radial-velocity data. We derive an expansion center that lies very close to
X-ray and radio hotspots, which could indicate the presence of a compact
remnant (neutron star or black hole).Comment: 28 pages, 8 figures. Accepted to the Astrophysical Journal, to appear
in 20 April 2006 issue. Full resolution figures are posted at:
http://stevenf.asu.edu/figure
The Cosmic Origins Spectrograph
The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in May 2009, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F(sub lambda) approximates 1.0 X 10(exp -14) ergs/s/cm2/Angstrom, COS can achieve comparable signal to noise (when compared to STIS echelle modes) in 1-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (September 2009 - June 2011) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is 9 times that sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of June 2011. COS has measured, for the first time with high reliability, broad Lya absorbers and Ne VIII in the intergalactic medium, and observed the HeII reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy
The Cosmic Origins Spectrograph
The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph
with unprecedented sensitivity that was installed into the Hubble Space
Telescope (HST) in May 2009, during HST Servicing Mission 4 (STS-125). We
present the design philosophy and summarize the key characteristics of the
instrument that will be of interest to potential observers. For faint targets,
with flux F_lambda ~ 1.0E10-14 ergs/s/cm2/Angstrom, COS can achieve comparable
signal to noise (when compared to STIS echelle modes) in 1-2% of the observing
time. This has led to a significant increase in the total data volume and data
quality available to the community. For example, in the first 20 months of
science operation (September 2009 - June 2011) the cumulative redshift
pathlength of extragalactic sight lines sampled by COS is 9 times that sampled
at moderate resolution in 19 previous years of Hubble observations. COS
programs have observed 214 distinct lines of sight suitable for study of the
intergalactic medium as of June 2011. COS has measured, for the first time with
high reliability, broad Lya absorbers and Ne VIII in the intergalactic medium,
and observed the HeII reionization epoch along multiple sightlines. COS has
detected the first CO emission and absorption in the UV spectra of low-mass
circumstellar disks at the epoch of giant planet formation, and detected
multiple ionization states of metals in extra-solar planetary atmospheres. In
the coming years, COS will continue its census of intergalactic gas, probe
galactic and cosmic structure, and explore physics in our solar system and
Galaxy.Comment: 17 pages, 15 figure