106 research outputs found

    Sample Processing Methods Impacts on Rumen Microbiome

    Get PDF
    The standardization of collection and processing methods for rumen samples is crucial to reduce the level of errors that may affect the analysis and interpretation of the data. The aim of this study was to compare two processing methods and their impacts on the microbial community composition analysis, from material that was either immediately frozen or samples that were stored as cell pellets after removing the supernatant prior to freezing. Eight rumen-fistulated Brahman steers received chloroform as an antimethanogenic compound for 21 days. Rumen fluid samples (60 mL per animal) were collected using a probe covered with two layers of cheesecloth at 3 h post feeding at day 0 prior-treatment (control period) and day 21 of treatment. One sub-set of samples were placed in dry ice and stored at −80°C (Method 1) for subsequent DNA extraction, while a second subset of samples was centrifuged, the supernatant removed and the microbial pellet and rumen contents placed in dry ice and stored at −80°C (Method 2) prior to DNA extractions. Phylogenetic based methods (Illumina Miseq) targeting the 16S rRNA gene were used to characterize the bacterial and archaeal communities from both collection methods for the control and treatment periods. The results from this study showed that the chloroform treatment was significantly different for all beta diversity measures regardless of the processing method used. Significant differences in the relative abundances of some bacteria and archaea, such as Elusimicrobia, Fibrobacteres, Lentisphaerae, Spirochaetes, and Verrucomicrobia and Methanomassiliicoccaceae, were observed at higher levels in the Method 2. These microbial populations are known to have fragile cell wall structures and are susceptible to cell lysis. Regardless of the processing method used, both identified the key microbial groups and can be used to compare the relative shifts in the rumen microbiome between treatments. However, immediately freezing samples might alter the abundance of material from species that are more readily lysed and will not be suitable for studies that aim to assign absolute abundance values to these species within the rumen

    Functional gene analysis suggests different acetogen populations in the Bovine Rumen and Tammar Wallaby Forestomach

    Get PDF
    Reductive acetogenesis via the acetyl coenzyme A (acetyl-CoA) pathway is an alternative hydrogen sink to methanogenesis in the rumen. Functional gene-based analysis is the ideal approach for investigating organisms capable of this metabolism (acetogens). However, existing tools targeting the formyltetrahydrofolate synthetase gene (fhs) are compromised by lack of specificity due to the involvement of formyltetrahydrofolate synthetase (FTHFS) in other pathways. Acetyl-CoA synthase (ACS) is unique to the acetyl-CoA pathway and, in the present study, acetyl-CoA synthase genes (acsB) were recovered from a range of acetogens to facilitate the design of acsB-specific PCR primers. fhs and acsB libraries were used to examine acetogen diversity in the bovine rumen and forestomach of the tammar wallaby (Macropus eugenii), a native Australian marsupial demonstrating foregut fermentation analogous to rumen fermentation but resulting in lower methane emissions. Novel, deduced amino acid sequences of acsB and fhs affiliated with the Lachnospiraceae in both ecosystems and the Ruminococcaeae/Blautia group in the rumen. FTHFS sequences that probably originated from nonacetogens were identified by low "homoacetogen similarity" scores based on analysis of FTHFS residues, and comprised a large proportion of FTHFS sequences from the tammar wallaby forestomach. A diversity of FTHFS and ACS sequences in both ecosystems clustered between the Lachnospiraceae and Clostridiaceae acetogens but without close sequences from cultured isolates. These sequences probably originated from novel acetogens. The community structures of the acsB and fhs libraries from the rumen and the tammar wallaby forestomach were different (LIBSHUFF, P < 0.001), and these differences may have significance for overall hydrogenotrophy in both ecosystems

    Is There Genetic Diversity in the ‘Leucaena Bug’ \u3cem\u3eSynergistes jonesii\u3c/em\u3e Which May Reflect Ability to Degrade Leucaena Toxins?

    Get PDF
    Leucaena leucocephala, a nutritionally rich forage tree legume, contains a non-protein amino acid, mimosine, which is degraded by ruminal bacteria to toxic metabolites 3,4-DHP and 2,3-DHP resulting in goitre-like symptoms in animals, severely restricting weight gain. Raymond Jones, in the early 1980s, discovered the ‘leucaena bug’ in the rumen of goats in Hawaii that degraded these toxic DHP metabolites into non-toxic compounds (Jones and Lowry 1984) which was named Synergistes jonesii (Allison et al. 1992) Subsequently, a rumen inoculum containing S. jonesii was used as an ‘oral drench’ for cattle, kept in continuous culture (Klieve et al. 2002) and supplied to farmers to dose cattle foraging on leucaena. Studies on Queensland herds that received this oral drench showed that up to 50% of 44 herds grazing on leucaena had apparent subclinical toxicity based on high 3,4- and 2,3-DHP excretion in urine (Dalzell et al., 2012). In another study by Graham et al. (2013), a 16S rDNA nested PCR showed that rumen digesta from 6 out of 8 properties tested had a variant DNA profile from S. jonesii ATCC 78.1 strain, which suggested a different strain of the bacterium. It was postulated that either the continually cultured oral inoculum may have undergone genetic modification and/or that animals could harbor other DHP degrading bacteria or S. jonesii strains with differential DHP degrading potential (McSweeney et al. unpublished). The present study looks at changes in the 16S rDNA gene at the molecular level that may suggest divergence from the type strain S. jonesii 78.1 (ATCC) in Queensland cattle as well as in cattle and other ruminants, internationally. These changes can appear as discrete mutations or ‘single nucleotide polymorphisms’ (SNPs) and may be correlated to their ability to degrade DHP, relative to the type strain

    Multi-omics in vitro study of the salivary modulation of the goat rumen microbiome

    Get PDF
    Ruminants are able to produce large quantities of saliva which enter into the rumen and salivary components exert different physiological functions. Although previous research has indicated that salivary immunoglobulins can partially modulate the rumen microbial activity, the role of the salivary components other than ions on the rumen microbial ecosystem has not been thoroughly investigated in ruminants. To investigate this modulatory activity, a total of 16 semi-continuous in vitro cultures with oats hay and concentrate were used to incubate rumen fluid from four donor goats with autoclaved saliva (AUT) as negative control, saliva from the same rumen fluid donor (OWN) as positive control, and either goat (GOAT) or sheep (SHEEP) saliva as experimental interventions. Fermentation was monitored throughout 7 days of incubation and the microbiome and metabolome were analysed at the end of this incubation by Next-Generation sequencing and liquid chromatography coupled with mass spectrometry, respectively. Characterisation of the proteome and metabolome of the different salivas used for the incubation showed a high inter-animal variability in terms of metabolites and proteins, including immunoglobulins. Incubation with AUT saliva promoted lower fermentative activity in terms of gas production (−9.4%) and highly divergent prokaryotic community in comparison with other treatments (OWN, GOAT and SHEEP) suggesting a modulatory effect derived from the presence of bioactive salivary components. Microbial alpha-diversity at amplicon sequence variant (ASV) level was unaffected by treatment. However, some differences were found in the microbial communities across treatments, which were mostly caused by a greater abundance of Proteobacteria and Rikenellacea in the AUT treatment and lower of Prevotellaceae. These bacteria, which are key in the rumen metabolism, had greater abundances in GOAT and SHEEP treatments. Incubation with GOAT saliva led to a lower protozoal concentration and propionate molar proportion indicating a capacity to modulate the rumen microbial ecosystem. The metabolomics analysis showed that the AUT samples were clustered apart from the rest indicating different metabolic pathways were promoted in this treatment. These results suggest that specific salivary components contribute to host-associated role in selecting the rumen commensal microbiota and its activity. These findings could open the possibility of developing new strategies to modulate the saliva composition as a way to manipulate the rumen function and activity

    Draft genome sequence of Treponema sp. strain JC4, a novel spirochete isolated from the bovine rumen

    Get PDF
    Morphologically and biochemically diverse members of the Treponema genus are present in the gastrointestinal tract of ruminants, yet very little is understood about their functional importance to this microbiome. Here we describe the annotated draft genome sequence of Treponema sp. strain JC4, a novel spirochete isolated from a bovine rumen sample

    Natural and artificial feeding management before weaning promote different rumen microbial colonization but not differences in gene expression levels at the rumen epithelium of newborn goats

    Get PDF
    The aim of this work was to evaluate the effect of feeding management during the first month of life (natural with the mother, NAT, or artificial with milk replacer, ART) on the rumen microbial colonization and the host innate immune response. Thirty pregnant goats carrying two fetuses were used. At birth one kid was taken immediately away from the doe and fed milk replacer (ART) while the other remained with the mother (NAT). Kids from groups received colostrum during first 2 days of life. Groups of four kids (from ART and NAT experimental groups) were slaughtered at 1, 3, 7, 14, 21 and 28 days of life. On the sampling day, after slaughtering, the rumen content was sampled and epithelial rumen tissue was collected. Pyrosequencing analyses of the bacterial community structure on samples collected at 3, 7, 14 and 28 days showed that both systems promoted significantly different colonization patterns (P = 0.001). Diversity indices increased with age and were higher in NAT feeding system. Lower mRNA abundance was detected in TLR2, TLR8 and TLR10 in days 3 and 5 compared to the other days (7, 14, 21 and 28). Only TLR5 showed a significantly different level of expression according to the feeding system, presenting higher mRNA abundances in ART kids. PGLYRP1 showed significantly higher abundance levels in days 3, 5 and 7, and then experienced a decline independently of the feeding system. These observations confirmed a highly diverse microbial colonisation from the first day of life in the undeveloped rumen, and show that the colonization pattern substantially differs between pre-ruminants reared under natural or artificial milk feeding systems. However, the rumen epithelial immune development does not differentially respond to distinct microbial colonization patterns.publishersversionPeer reviewe

    Methanogen Diversity in Indigenous and Introduced Ruminant Species on the Tibetan Plateau

    Get PDF
    Host factors are regarded as important in shaping the archaeal community in the rumen but few controlled studies have been performed to demonstrate this across host species under the same environmental conditions. A study was designed to investigate the structure of the methanogen community in the rumen of two indigenous (yak and Tibetan sheep) and two introduced domestic ruminant (cattle and crossbred sheep) species raised and fed under similar conditions on the high altitude Tibetan Plateau. The methylotrophic Methanomassiliicoccaceae was the predominant archaeal group in all animals even though Methanobrevibacter are usually present in greater abundance in ruminants globally. Furthermore, within the Methanomassiliicoccaceae family members from Mmc. group 10 and Mmc. group 4 were dominant in Tibetan Plateau ruminants compared to Mmc. group 12 found to be highest in other ruminants studied. Small ruminants presented the highest number of sequences that belonged to Methanomassiliicoccaceae compared to the larger ruminants. Although the methanogen community structure was different among the ruminant species, there were striking similarities between the animals in this environment. This indicates that factors such as the extreme environmental conditions and diet on the Tibetan Plateau might have a greater impact on rumen methanogen community compared to host differences

    Addressing global ruminant agricultural challenges through understanding the rumen microbiome::Past, present and future

    Get PDF
    The rumen is a complex ecosystem composed of anaerobic bacteria, protozoa, fungi, methanogenic archaea and phages. These microbes interact closely to breakdown plant material that cannot be digested by humans, whilst providing metabolic energy to the host and, in the case of archaea, producing methane. Consequently, ruminants produce meat and milk, which are rich in high-quality protein, vitamins and minerals, and therefore contribute to food security. As the world population is predicted to reach approximately 9.7 billion by 2050, an increase in ruminant production to satisfy global protein demand is necessary, despite limited land availability, and whilst ensuring environmental impact is minimized. Although challenging, these goals can be met, but depend on our understanding of the rumen microbiome. Attempts to manipulate the rumen microbiome to benefit global agricultural challenges have been ongoing for decades with limited success, mostly due to the lack of a detailed understanding of this microbiome and our limited ability to culture most of these microbes outside the rumen. The potential to manipulate the rumen microbiome and meet global livestock challenges through animal breeding and introduction of dietary interventions during early life have recently emerged as promising new technologies. Our inability to phenotype ruminants in a high-throughput manner has also hampered progress, although the recent increase in “omic” data may allow further development of mathematical models and rumen microbial gene biomarkers as proxies. Advances in computational tools, high-throughput sequencing technologies and cultivation-independent “omics” approaches continue to revolutionize our understanding of the rumen microbiome. This will ultimately provide the knowledge framework needed to solve current and future ruminant livestock challenges
    • 

    corecore