1,049 research outputs found
Resonant structure of space-time of early universe
A new fully quantum method describing penetration of packet from internal
well outside with its tunneling through the barrier of arbitrary shape used in
problems of quantum cosmology, is presented. The method allows to determine
amplitudes of wave function, penetrability and reflection relatively the barrier (accuracy of the method: ), coefficient of penetration (i.e. probability of
the packet to penetrate from the internal well outside with its tunneling),
coefficient of oscillations (describing oscillating behavior of the packet
inside the internal well). Using the method, evolution of universe in the
closed Friedmann--Robertson--Walker model with quantization in presence of
positive cosmological constant, radiation and component of generalize Chaplygin
gas is studied. It is established (for the first time): (1) oscillating
dependence of the penetrability on localization of start of the packet; (2)
presence of resonant values of energy of radiation , at which the
coefficient of penetration increases strongly. From analysis of these results
it follows: (1) necessity to introduce initial condition into both
non-stationary, and stationary quantum models; (2) presence of some definite
values for the scale factor , where start of expansion of universe is the
most probable; (3) during expansion of universe in the initial stage its radius
is changed not continuously, but passes consequently through definite discrete
values and tends to continuous spectrum in latter time.Comment: 18 pages, 14 figures, 4 table
Finite sum of gluon ladders and high energy cross sections
A model for the Pomeron at is suggested. It is based on the idea of a
finite sum of ladder diagrams in QCD. Accordingly, the number of -channel
gluon rungs and correspondingly the powers of logarithms in the forward
scattering amplitude depends on the phase space (energy) available, i.e. as
energy increases, progressively new prongs with additional gluon rungs in the
-channel open. Explicit expressions for the total cross section involving
two and three rungs or, alternatively, three and four prongs (with
and as highest terms, respectively) are fitted to the proton-proton
and proton-antiproton total cross section data in the accelerator region. Both
QCD calculation and fits to the data indicate fast convergence of the series.
In the fit, two terms (a constant and a logarithmically rising one) almost
saturate the whole series, the term being small and the next one,
, negligible. Theoretical predictions for the photon-photon total
cross section are also given.Comment: 18 pages, LaTeX, 2 EPS figures, uses axodraw.st
Exotic Meson Production in the System observed in the Reaction at 18 GeV/c
This letter reports results from the partial wave analysis of the
final state in collisions at 18GeV/c.
Strong evidence is observed for production of two mesons with exotic quantum
numbers of spin, parity and charge conjugation, in the decay
channel . The mass MeV/c^2 and
width MeV/c^2 of the first state are consistent
with the parameters of the previously observed . The second
resonance with mass MeV/c^2 and width MeV/c^2 agrees very well with predictions from theoretical
models. In addition, the presence of is confirmed with mass MeV/c^2 and width MeV/c^2
and a new state, , is observed with mass
MeV/c^2 and width MeV/c^2. The decay properties of
these last two states are consistent with flux tube model predictions for
hybrid mesons with non-exotic quantum numbers
Heavy Quarks and Heavy Quarkonia as Tests of Thermalization
We present here a brief summary of new results on heavy quarks and heavy
quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma
Thermalization" Workshop in Vienna, Austria in August 2005, directly following
the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop
(Vienna August 2005) Proceeding
Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV
The invariant differential cross section for inclusive electron production in
p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment
at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4
<= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the
inclusive electron spectrum from semileptonic decays of hadrons carrying heavy
flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via
three independent methods. The resulting electron spectrum from heavy flavor
decays is compared to recent leading and next-to-leading order perturbative QCD
calculations. The total cross section of charm quark-antiquark pair production
is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Nuclear Modification of Electron Spectra and Implications for Heavy Quark Energy Loss in Au+Au Collisions at sqrt(s_NN)=200 GeV
The PHENIX experiment has measured mid-rapidity transverse momentum spectra
(0.4 < p_T < 5.0 GeV/c) of electrons as a function of centrality in Au+Au
collisions at sqrt(s_NN)=200 GeV. Contributions from photon conversions and
from light hadron decays, mainly Dalitz decays of pi^0 and eta mesons, were
removed. The resulting non-photonic electron spectra are primarily due to the
semi-leptonic decays of hadrons carrying heavy quarks. Nuclear modification
factors were determined by comparison to non-photonic electrons in p+p
collisions. A significant suppression of electrons at high p_T is observed in
central Au+Au collisions, indicating substantial energy loss of heavy quarks.Comment: 330 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV
We report the results of a study of color coherence effects in ppbar
collisions based on data collected by the D0 detector during the 1994-1995 run
of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8
TeV. Initial-to-final state color interference effects are studied by examining
particle distribution patterns in events with a W boson and at least one jet.
The data are compared to Monte Carlo simulations with different color coherence
implementations and to an analytic modified-leading-logarithm perturbative
calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters
Dilepton mass spectra in p+p collisions at sqrt(s)= 200 GeV and the contribution from open charm
The PHENIX experiement has measured the electron-positron pair mass spectrum
from 0 to 8 GeV/c^2 in p+p collisions at sqrt(s)=200 GeV. The contributions
from light meson decays to e^+e^- pairs have been determined based on
measurements of hadron production cross sections by PHENIX. They account for
nearly all e^+e^- pairs in the mass region below 1 GeV/c^2. The e^+e^- pair
yield remaining after subtracting these contributions is dominated by
semileptonic decays of charmed hadrons correlated through flavor conservation.
Using the spectral shape predicted by PYTHIA, we estimate the charm production
cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) \mu b, which
is consistent with QCD calculations and measurements of single leptons by
PHENIX.Comment: 375 authors from 57 institutions, 18 pages, 4 figures, 2 tables.
Submitted to Physics Letters B. v2 fixes technical errors in matching authors
to institutions. Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Inclusive cross section and double helicity asymmetry for \pi^0 production in p+p collisions at sqrt(s)=200 GeV: Implications for the polarized gluon distribution in the proton
The PHENIX experiment presents results from the RHIC 2005 run with polarized
proton collisions at sqrt(s)=200 GeV, for inclusive \pi^0 production at
mid-rapidity. Unpolarized cross section results are given for transverse
momenta p_T=0.5 to 20 GeV/c, extending the range of published data to both
lower and higher p_T. The cross section is described well for p_T < 1 GeV/c by
an exponential in p_T, and, for p_T > 2 GeV/c, by perturbative QCD. Double
helicity asymmetries A_LL are presented based on a factor of five improvement
in uncertainties as compared to previously published results, due to both an
improved beam polarization of 50%, and to higher integrated luminosity. These
measurements are sensitive to the gluon polarization in the proton, and exclude
maximal values for the gluon polarization.Comment: 375 authors, 7 pages, 3 figures. Submitted to Phys. Rev. D, Rapid
Communications. Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …