26 research outputs found

    Elentári: a massive proto-supercluster at z ∼ 3.3 in the COSMOS field

    Get PDF
    Motivated by spectroscopic confirmation of three overdense regions in the COSMOS field at z similar to 3.35, we analyse the uniquely deep multiwavelength photometry and extensive spectroscopy available in the field to identify any further related structure. We construct a three-dimensional density map using the Voronoi tesselation Monte Carlo method and find additional regions of significant overdensity. Here, we present and examine a set of six overdense structures at 3.20 < z < 3.45 in the COSMOS field, the most well-characterized of which, PCl J0959 + 0235, has 80 spectroscopically confirmed members and an estimated mass of 1.35 x 10(15) M-circle dot, and is modelled to virialize at z similar to 1.5-2.0. These structures contain 10 overdense peaks with >5 sigma overdensity separated by up to 70 cMpc, suggestive of a proto-supercluster similar to the Hyperion system at z similar to 2.45. Upcoming photometric surveys with JWST such as COSMOS-Web, and further spectroscopic follow-up will enable more extensive analysis of the evolutionary effects that such an environment may have on its component galaxies at these early times

    The Mitochondrial Fission Protein hFis1 Requires the Endoplasmic Reticulum Gateway to Induce Apoptosis

    No full text
    Mitochondrial fission ensures organelle inheritance during cell division and participates in apoptosis. The fission protein hFis1 triggers caspase-dependent cell death, by causing the release of cytochrome c from mitochondria. Here we show that mitochondrial fission induced by hFis1 is genetically distinct from apoptosis. In cells lacking the multidomain proapoptotic Bcl-2 family members Bax and Bak (DKO), hFis1 caused mitochondrial fragmentation but not organelle dysfunction and apoptosis. Similarly, a mutant in the intermembrane region of hFis1-induced fission but not cell death, further dissociating mitochondrial fragmentation from apoptosis induction. Selective correction of the endoplasmic reticulum (ER) defect of DKO cells restored killing by hFis1, indicating that death by hFis1 relies on the ER gateway of apoptosis. Consistently, hFis1 did not directly activate BAX and BAK, but induced Ca(2+)-dependent mitochondrial dysfunction. Thus, hFis1 is a bifunctional protein that independently regulates mitochondrial fragmentation and ER-mediated apoptosis

    A simple method for the calculation of dialysis Kt factor as a quantitative measure of removal efficiency of uremic retention solutes: Applicability to high-dialysate vs low-dialysate volume technologies.

    No full text
    Dialysis urea removal metrics may not translate into proportional removal efficiency of non-urea solutes. We show that the Kt factor (plasma volume totally cleared of any solutes) differentiates removal efficiency of non-urea solutes in different technologies, and can easily be calculated by instant blood-dialysate collections. We performed mass balances of urea, creatinine, phosphorus and beta2-microglobulin by whole dialysate collection in 4 low-flux and 3 high-flux hemodialysis, 2 high-volume post-hemodiafiltration and 7 short-daily dialysis with the NxStage-One system. Instant dialysate/blood determinations were also performed at different times, and Kt was calculated as the product of the D/P ratio by volume of delivered dialysate plus UF. There were significant differences in single session and weekly Kt (whole dialysate and instant calculations) between methodologies, most notably for creatinine, phosphorus and beta2-microglobulin. Urea Kt messured in balance studies was almost equal to that derived from the usual plasma kinetic model-based Daugirdas' equation (eKt/V) and independent V calculation, indicating full correspondence. Non-urea solute Kt as a fraction of urea Kt (i.e. fractional removal relative to urea) showed significant differences between technologies, indicating non-proportional removal of non-urea solutes and urea. Instant Kt was higher than that in full balances, accounting for concentration disequilibrium between arterial and systemic blood, but measured and calculated quantitative solute removal were equal, as were qualitative Kt comparisons between technologies. Thus, we show that urea metrics may not reliably express removal efficiency of non-urea solutes, as indicated by Kt. Kt can easily be measured without whole dialysate collection, allowing to expand the metrics of dialytic efficiency to almost any non-urea solute removed by dialysis

    Candida albicans inactivation and cell membrane integrity damage by microwave irradiation

    No full text
    In indicating the microwave irradiation for disinfecting dentures it is necessary to see how this procedure influences Candida albicans integrity and viability. The aim of this study was to evaluate the ability of microwaves to inactivate C. albicans and damage cell membrane integrity. Two 200-ml C. albicans (ATCC 10231) suspensions were obtained. A sterile denture was placed in a beaker containing the Experimental (ES) or the Control suspension (CS). ES was microwaved at 650 W for 6 min. Suspensions were optically counted using methylene blue dye uptake as indicative of membrane-damaged cells; spread on Agar Sabouraud dextrose (ASD) for viability assay; or spectrophotometrically measured at 550 nm. Cell-free solutions were submitted to content analyses of protein (Bradford and Pyrogallol red methods); Ca++ (Cresolftaleine complexone method); DNA (spectrophotometer measurements at 260 nm) and K + (selective electrode technique). Data were analysed by Student's t- or Wilcoxon z-tests (α = 0.05). All ES cells demonstrated cell membrane damage. Viable cells were non-existent in the ES ASD plates. No significant difference in optical density between ES and CS was observed (P = 0.272). ES cells released significantly high protein (P < 0.001, Bradford; P = 0.005, Pyrogallol red), K+ (P < 0.001), Ca++ (P = 0.012) and DNA (P = 0.046) contents. Microwaves inactivated C. albicans and damaged cell membrane integrity. © 2007 The Authors

    Effectiveness of microwave irradiation on the disinfection of complete dentures

    No full text
    Purpose: The purpose of this study was to evaluate the effectiveness of microwave irradiation on the disinfection of simulated complete dentures. Materials and Methods: Eighty dentures were fabricated in a standardized procedure and subjected to ethylene oxide sterilization. The dentures were individually inoculated (10 7 cfu/mL) with tryptic soy broth (TSB) media containing one of the tested microorganisms (Candida albicans, Streptoccus aureus, Bacillus subtilis, and Pseudomonas aeruginosa). After 48 hours of incubation at 37°C, 40 dentures were individually immersed in 200 mL of water and submitted to microwave irradiation at 650 W for 6 minutes. Forty nonirradiated dentures were used as positive controls. Replicate aliquots (25 μL) of suspensions were plated at dilutions of 10 -3 to 10 -6 on plates of selective media appropriate for each organism. All plates were incubated at 37°C for 48 hours. TSB beakers with the microwaved dentures were incubated at 37°C for 7 more days. After incubation, the number of colony-forming units was counted and the data were statistically analyzed by Kruskal-Wallis test (α = .05). Results: No evidence of growth was observed at 48 hours for S aureus, B subtilis, and C albicans. Dentures contaminated with P aeruginosa showed small growth on 2 plates. After 7 days incubation at 37°C, no growth was visible in the TSB beakers of S aureus and C albicans. Turbidity was observed in 3 broth beakers, 2 from P aeruginosa and 1 from B subtilis. Conclusion: Microwave irradiation for 6 minutes at 650 W produced sterilization of complete dentures contaminated with S aureus and C albicans and disinfection of those contaminated with P aeruginosa and B subtilis

    Effect of different exposure times on microwave irradiation on the disinfection of a hard chairside reline resin

    No full text
    Purpose: This study evaluated the effectiveness of different exposure times of microwave irradiation on the disinfection of a hard chairside reline resin. Materials and Methods: Sterile specimens were individually inoculated with one of the tested microorganisms (Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Bacillus subtilis) and incubated for 24 hours at 37°C. For each microorganism, 10 specimens were not microwaved (control), and 50 specimens were microwaved. Control specimens were individually immersed in sterile saline, and replicate aliquots of serial dilutions were plated on selective media appropriate for each organism. Irradiated specimens were immersed in water and microwaved at 650 W for 1, 2, 3, 4, or 5 minutes before serial dilutions and platings. After 48 hours of incubation, colonies on plates were counted. Irradiated specimens were also incubated for 7 days. Some specimens were prepared for scanning electron microscopic (SEM) analysis. Results: Specimens irradiated for 3, 4, and 5 minutes showed sterilization. After 2 minutes of irradiation, specimens inoculated with C. albicans were sterilized, whereas those inoculated with bacteria were disinfected. One minute of irradiation resulted in growth of all microorganisms. SEM examination indicated alteration in cell morphology of sterilized specimens. The effectiveness of microwave irradiation was improved as the exposure time increased. Conclusion: This study suggests that 3 minutes of microwave irradiation can be used for acrylic resin sterilization, thus preventing cross-contamination. © 2008 by The American College of Prosthodontists

    Effectiveness of Microwave Sterilization on Three Hard Chairside Reline Resins

    No full text
    Purpose: The aim of this study was to evaluate the effectiveness of microwave irradiation sterilization on hard chairside reline resins. Materials and Methods: Specimens of three reline resins (Kooliner, Tokuso Rebase, and Ufi Gel Hard) were fabricated and subjected to ethylene oxide sterilization. The specimens were then individually inoculated (107 cfu/mL) with Tryptic Soy Broth media containing one of the tested microorganisms (C albicans, S aureus, B subtilis, and P aeruginosa). After 48 hours at 37°C, the samples were vortexed for 1 minute and allowed to stand for 9 minutes, followed by a short vortex to resuspend any organisms present. After inoculation, 40 specimens of each material were immersed in 200 mL of water and subjected to microwave irradiation at 650 W for 6 minutes. Forty non-irradiated specimens were used as positive controls. Replicate specimens (25 μL) of suspension were plated at dilutions of 10-3 to 10-6 on plates of selective media appropriate for each organism. All plates were incubated at 37°C for 48 hours. After incubation, colonies were counted, and the data were statistically analyzed by the Kruskal-Wallis test. Twelve specimens of each material were prepared for SEM. Results: All immersed specimens showed consistent sterilization of all the individual organisms after microwave irradiation. SEM examination indicated an alteration in cell morphology after microwave irradiation. Conclusion: Microwave sterilization for 6 minutes at 650 W proved to be effective for the sterilization of hard chairside reline resins

    Effect of experimental photopolymerized coatings on the hydrophobicity of a denture base acrylic resin and on Candida albicans adhesion

    Get PDF
    Objective: This study investigated the effect of experimental photopolymerized coatings, containing zwitterionic or hydrophilic monomers, on the hydrophobicity of a denture base acrylic resin and on Candida albicans adhesion. Methods: Acrylic specimens were prepared with rough and smooth surfaces and were either left untreated (control) or coated with one of the following experimental coatings: 2-hydroxyethyl methacrylate (HE); 3-hydroxypropyl methacrylate (HP); and 2-trimethylammonium ethyl methacrylate chloride (T); and sulfobetaine methacrylate (S). The concentrations of these constituent monomers were 25%, 30% or 35%. Half of the specimens in each group (control and experimentals) were coated with saliva and the other half remained uncoated. The surface free energy of all specimens was measured, regardless of the experimental condition. C. albicans adhesion was evaluated for all specimens, both saliva conditioned and unconditioned. The adhesion test was performed by incubating specimens in C. albicans suspensions (1 × 10 7 cell/mL) at 37 °C for 90 min. The number of adhered yeasts were evaluated by XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-5-[{phenylamino} carbonyl]-2H-tetrazolium-hydroxide) method. Results: For rough surfaces, coatings S (30 or 35%) and HP (30%) resulted in lower absorbance values compared to control. These coatings exhibited more hydrophilic surfaces than the control group. Roughness increased the adhesion only in the control group, and saliva did not influence the adhesion. The photoelectron spectroscopy analysis (XPS) confirmed the chemical changes of the experimental specimens, particularly for HP and S coatings. Conclusions: S and HP coatings reduced significantly the adhesion of C. albicans to the acrylic resin and could be considered as a potential preventive treatment for denture stomatitis. © 2012 Elsevier Ltd

    Implications of the Environments of Radio-detected Active Galactic Nuclei in a Complex Protostructure at z ∼ 3.3

    Get PDF
    International audienceRadio active galactic nuclei (RAGNs) are mainly found in dense structures (i.e., clusters/groups) at redshifts of z 1.4 GHz ∼ 1025 W Hz-1) RAGNs in a known protocluster at z = 3.3 in the PCl J0227-0421 field, detected using the latest radio observation obtained as part of the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) survey. Using new spectroscopic observations obtained from the Keck/Multi-Object Spectrometer for Infra-Red Exploration as part of the Charting Cluster Construction with the VIMOS Ultra-Deep Survey (VUDS) and ORELSE (C3VO) survey and previous spectroscopic data obtained as part of the VIMOS-Very Large Telescope Deep Survey and VUDS, we revise the three-dimensional overdensity field around this protocluster. The protocluster is embedded in a large-scale overdensity protostructure. This protostructure has an estimated total mass of ∼2.6 × 1015 M⊙ and contains several overdensity peaks. Both RAGNs are hosted by very bright and massive galaxies, while their hosts show extreme differences in color, indicating that they are of different ages and are in different evolutionary stages. Furthermore, we find that they are not in the most locally dense parts of the protostructure, but are fairly close to the centers of their parent overdensity peaks. We propose a scenario where merging might have already happened in both cases, which lowered the local density of their surrounding area and boosted their stellar mass. This work is the first time that two RAGNs at low luminosity have been found and studied within a high-redshift protostructure
    corecore