50 research outputs found

    Covariability of dissolved oxygen with physical processes in the summertime Chesapeake Bay

    Get PDF
    Long, rapidly sampled time series measurements of dissolved oxygen, temperature, salinity, currents, winds, tides, and insolation were collected during the summer of 1987 across the mesohaline Chesapeake Bay. Analyses of the data show that short term variability of dissolved oxygen was both large and spatially heterogeneous. Time scales of variability ranged from the longest period fluctuations resolved (several days) to the sampling interval (several minutes). The largest variability was associated with large amplitude, wind and tide forced lateral internal oscillations of the pycnocline in the mainstem of the Bay. These resulted in advection of saline, hypoxic water from below the pycnocline onto the flanks of the Bay and into the lower reaches of the Choptank River, an adjoining tributary estuary. Advective variability at higher frequencies was likely due to internal waves, internal mixing, and/or spatial patchiness. Dissolved oxygen also responded to the daily cycle of insolation, but lagged insolation by at least 90° (6 h). Advective variability of dissolved oxygen is implicated as an important characteristic of the majority of summertime benthic environments in the mesohaline Chesapeake Bay and lower reaches of adjoining tributaries

    Evaluating Ecosystem Response to Oyster Restoration and Nutrient Load Reduction With a Multispecies Bioenergetics Model

    Get PDF
    Many of the world\u27s coastal ecosystems are impacted by multiple stressors each of which may be subject to different management strategies that may have overlapping or even conflicting objectives. Consequently, management results may be indirect and difficult to predict or observe. We developed a network simulation model intended specifically to examine ecosystem-level responses to management and applied this model to a comparison of nutrient load reduction and restoration of highly reduced stocks of bivalve suspension feeders (eastern oyster, Crassostrea virginica) in an estuarine ecosystem (Chesapeake Bay, USA). Model results suggest that a 50% reduction in nutrient inputs from the watershed will result in lower phytoplankton production in the spring and reduced delivery of organic material to the benthos that will limit spring and summer pelagic secondary production. The model predicts that low levels of oyster restoration will have no effect in the spring but does result in a reduction in phytoplankton standing stocks in the summer. Both actions have a negative effect on pelagic secondary production, but the predicted effect of oyster restoration is larger. The lower effect of oysters on phytoplankton is due to size-based differences infiltration efficiency and seasonality that result in maximum top-down grazer control of oysters at a time when the phytoplankton is already subject to heavy grazing. These results suggest that oyster restoration must be achieved at levels as much as 25-fold present biomass to have a meaningful effect on phytoplankton biomass and as much as 50-fold to achieve effects similar to a 50% nutrient load reduction. The unintended effect of oyster restoration at these levels on other consumers represents a trade-off to the desired effect of reversing eutrophication

    Landscape-Level Variation in Disease Susceptibility Related to Shallow-Water Hypoxia

    Get PDF
    Diel-cycling hypoxia is widespread in shallow portions of estuaries and lagoons, especially in systems with high nutrient loads resulting from human activities. Far less is known about the effects of this form of hypoxia than deeper-water seasonal or persistent low dissolved oxygen. We examined field patterns of diel-cycling hypoxia and used field and laboratory experiments to test its effects on acquisition and progression of Perkinsus marinus infections in the eastern oyster, Crassostrea virginica, as well as on oyster growth and filtration. P. marinus infections cause the disease known as Dermo, have been responsible for declines in oyster populations, and have limited success of oyster restoration efforts. The severity of diel-cycling hypoxia varied among shallow monitored sites in Chesapeake Bay, and average daily minimum dissolved oxygen was positively correlated with average daily minimum pH. In both field and laboratory experiments, diel-cycling hypoxia increased acquisition and progression of infections, with stronger results found for younger (1-year-old) than older (2-3-year-old) oysters, and more pronounced effects on both infections and growth found in the field than in the laboratory. Filtration by oysters was reduced during brief periods of exposure to severe hypoxia. This should have reduced exposure to waterborne P. marinus, and contributed to the negative relationship found between hypoxia frequency and oyster growth. Negative effects of hypoxia on the host immune response is, therefore, the likely mechanism leading to elevated infections in oysters exposed to hypoxia relative to control treatments. Because there is considerable spatial variation in the frequency and severity of hypoxia, diel-cycling hypoxia may contribute to landscape-level spatial variation in disease dynamics within and among estuarine systems

    Differences in Relative Predation Vulnerability Between Native and Non-native Oyster Larvae and the Influence on Restoration Planning in an Estuarine Ecosystem

    No full text
    The costs and benefits of non-native introductions as a restoration tool should be estimated prior to any action to prevent both undesirable consequences and waste of restoration resources. The suggested introduction of non-native oyster species, Crassostrea ariakensis, into Chesapeake Bay, USA, provides a good example in which the survival of non-native oysters may differ from that of native oysters, Crassostrea virginica, during the larval stage. Experiments were conducted to compare the predation vulnerability of native and non-native oyster larvae to different predator types (visual vs. non-visual, benthic vs. pelagic). The results suggest that the non-native larvae are more vulnerable to visual and non-visual pelagic predators. Although vulnerability was similar for larvae exposed to benthic non-visual predators, the consumption of one non-native strain was higher than the consumption of native C. virginica larvae. When vulnerability data are combined with predator feeding rates, the predation mortality for non-native larvae in the wild can be much higher than for native larvae. Small changes in larval mortality rates can yield large changes in total larval delivery to the reef for settlement, so these differences among species may contribute to differences in settlement success. These results provide an example of how a comprehensive examination of the perceived benefits of non-native introductions into complex ecosystems can provide important information to inform management decisions

    Ecosystem Engineers in the Pelagic Realm: Alteration of Habitat by Species Ranging from Microbes to Jellyfish

    No full text
    Ecosystem engineers are species that alter the physical environment in ways that create new habitat or change the suitability of existing habitats for themselves or other organisms. In marine systems, much of the focus has been on species such as corals, oysters, and macrophytes that add physical structure to the environment, but organisms ranging from microbes to jellyfish and finfish that reside in the water column of oceans, estuaries, and coastal seas alter the chemical and physical environment both within the water column and on the benthos. By causing hypoxia, changing light regimes, and influencing physical mixing, these organisms may have as strong an effect as species that fall more clearly within the classical category of ecosystem engineer. In addition, planktonic species, such as jellyfish, may indirectly alter the physical environment through predator-mediated landscape structure. By creating spatial patterns of habitats that vary in their rates of mortality due to predation, planktonic predators may control spatial patterns and abundances of species that are the direct creators or modifiers of physical habitat

    Effects of Co-Varying Diel-Cycling Hypoxia and pH on Growth in the Juvenile Eastern Oyster, <i>Crassostrea virginica</i>

    No full text
    <div><p>Shallow water provides important habitat for many species, but also exposes these organisms to daily fluctuations in dissolved oxygen (DO) and pH caused by cycles in the balance between photosynthesis and respiration that can contribute to repeated, brief periods of hypoxia and low pH (caused by elevated pCO<sub>2</sub>). The amplitude of these cycles, and the severity and duration of hypoxia and hypercapnia that result, can be increased by eutrophication, and are predicted to worsen with climate change. We conducted laboratory experiments to test the effects of both diel-cycling and constant low DO and pH (elevated pCO<sub>2</sub>) on growth of the juvenile eastern oyster (<i>Crassostrea virginica</i>), an economically and ecologically important estuarine species. Severe diel-cycling hypoxia (to 0.5 mg O<sub>2</sub> L<sup>-1</sup>) reduced shell growth in juvenile oysters, as did constant hypoxia (1.2 and 2.0 mg O<sub>2</sub> L<sup>-1</sup>), although effects varied among experiments, oyster ages, and exposure durations. Diel-cycling pH reduced growth only in experiments in which calcite saturation state cycled to ≤0.10 and only during the initial weeks of these experiments. In other cases, cycling pH sometimes led to increased growth rates. Comparisons of treatment effects across multiple weeks of exposure, and during a longer post-experiment field deployment, indicated that juvenile oysters can acclimate to, and in some cases compensate for initial reductions in growth. As a result, some ecosystem services dependent on juvenile oyster growth rates may be preserved even under severe cycling hypoxia and pH.</p></div

    2015 juvenile oyster growth experiment.

    No full text
    <p>2015 juvenile oyster growth experiment.</p

    Effects of Oyster Population Restoration Strategies On Phytoplankton Biomass in Chesapeake Bay: A Flexible Modeling Approach

    No full text
    Cultural eutrophication in estuaries and other coastal systems has increased over the last 50 yr. Some recently proposed strategies to reverse this trend have included the restoration of bivalve suspension feeders as an ecological tool for reducing phytoplankton biomass. The ecological benefits accruing from such bivalve restoration will be dependent on the characteristics of the estuary, as well as how restoration is implemented. We developed a filtration model to estimate the effect of bivalve restoration on the rate of phytoplankton removal over a range of spatial and temporal scales and used it to compare alternate restoration strategies for the eastern oyster Crassostrea virginica in Chesapeake Bay, USA. Model results suggested that currently accepted restoration goals for oysters in the bay are unlikely to result in significant bay-wide reductions in phytoplankton biomass. This is partially due to low current biomass targets for oyster restoration, but also important are several spatial and temporal mismatches between oyster and phytoplankton biomass that may limit the ecological benefit of oyster restoration. Our model did predict important increases in phytoplankton removal by oysters at the tributary scale, and this effect was dependent on where oyster restoration was achieved and whether restoration and management plans affected the size distribution of oysters. Our findings suggest that the ecological benefit of restoring bivalve populations are variable, and a comparative model analysis of restoration plans in particular systems can be highly beneficial to maximizing the benefit-to-cost ratio of restoration efforts intended to reduce the negative effects of cultural eutrophication
    corecore