35,365 research outputs found

    Error control for reliable digital data transmission and storage systems

    Get PDF
    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. In this paper we present some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative alorithm to find the error locator polynomial. Two codes are considered: (1) a d sub min = 4 single-byte-error-correcting (SBEC), double-byte-error-detecting (DBED) RS code; and (2) a d sub min = 6 double-byte-error-correcting (DBEC), triple-byte-error-detecting (TBED) RS code

    A Monte Carlo study of the triangular lattice gas with the first- and the second-neighbor exclusions

    Full text link
    We formulate a Swendsen-Wang-like version of the geometric cluster algorithm. As an application,we study the hard-core lattice gas on the triangular lattice with the first- and the second-neighbor exclusions. The data are analyzed by finite-size scaling, but the possible existence of logarithmic corrections is not considered due to the limited data. We determine the critical chemical potential as μc=1.75682(2)\mu_c=1.75682 (2) and the critical particle density as ρc=0.180(4)\rho_c=0.180(4). The thermal and magnetic exponents yt=1.51(1)3/2y_t=1.51(1) \approx 3/2 and yh=1.8748(8)15/8y_h=1.8748 (8) \approx 15/8, estimated from Binder ratio QQ and susceptibility χ\chi, strongly support the general belief that the model is in the 4-state Potts universality class. On the other hand, the analyses of energy-like quantities yield the thermal exponent yty_t ranging from 1.440(5)1.440(5) to 1.470(5)1.470(5). These values differ significantly from the expected value 3/2, and thus imply the existence of logarithmic corrections.Comment: 4 figures 2 table

    Modified Bethe-Peierls boundary condition for ultracold atoms with Spin-Orbit coupling

    Full text link
    We show that the Bethe-Peierls (BP) boundary condition should be modified for ultracold atoms with spin-orbit (SO) coupling. Moreover, we derive a general form of the modified BP boundary condition, which is applicable to a system with arbitrary kind of SO coupling. In the modified BP condition, an anisotropic term appears and the inter-atomic scattering length is normally SO-coupling dependent. For the special system in the current experiments, however, it can be proved that the scattering length is SO-coupling independent, and takes the same value as in the case without SO coupling. Our result is helpful for the study of both few-body and many-body physics in SO-coupled ultracold gases.Comment: 8 pages, significant improvement is made in the current versio

    Characterising Probabilistic Processes Logically

    Full text link
    In this paper we work on (bi)simulation semantics of processes that exhibit both nondeterministic and probabilistic behaviour. We propose a probabilistic extension of the modal mu-calculus and show how to derive characteristic formulae for various simulation-like preorders over finite-state processes without divergence. In addition, we show that even without the fixpoint operators this probabilistic mu-calculus can be used to characterise these behavioural relations in the sense that two states are equivalent if and only if they satisfy the same set of formulae.Comment: 18 page

    New Consequences of Induced Transparency in a Double-Lambda scheme: Destructive Interference In Four-wave Mixing

    Full text link
    We investigate a four-state system interacting with long and short laser pulses in a weak probe beam approximation. We show that when all lasers are tuned to the exact unperturbed resonances, part of the four-wave mixing (FWM) field is strongly absorbed. The part which is not absorbed has the exact intensity required to destructively interfere with the excitation pathway involved in producing the FWM state. We show that with this three-photon destructive interference, the conversion efficiency can still be as high as 25%. Contrary to common belief,our calculation shows that this process, where an ideal one-photon electromagnetically induced transparency is established, is not most suitable for high efficiency conversion. With appropriate phase-matching and propagation distance, and when the three-photon destructive interference does not occur, we show that the photon flux conversion efficiency is independent of probe intensity and can be close to 100%. In addition, we show clearly that the conversion efficiency is not determined by the maximum atomic coherence between two lower excited states, as commonly believed. It is the combination of phase-matching and constructive interference involving the two terms arising in producing the mixing wave that is the key element for the optimized FWM generation. Indeed, in this scheme no appreciable excited state is produced, so that the atomic coherence between states |0> and |2> is always very small.Comment: Submitted to Phys. Rev. A, 7 pages, 4 figure

    Technological innovations at the onset of the Mid-Pleistocene Climate Transition in high-latitude East Asia

    No full text
    The interplay between Pleistocene climatic variability and hominin adaptations to diverse terrestrial ecosystems is a key topic in human evolutionary studies. Early and Middle Pleistocene environmental change and its relation to hominin behavioural responses has been a subject of great interest in Africa and Europe, though little information is available for other key regions of the Old World, particularly from Eastern Asia. Here we examine key Early Pleistocene sites of the Nihewan Basin, in high-latitude northern China, dating between ∼1.4 to 1.0 million years ago (Ma). We compare stone tool assemblages from three Early Pleistocene sites in the Nihewan Basin, including detailed assessment of stone tool refitting sequences at the ∼1.1 Ma-old site of Cenjiawan. Increased toolmaking skills and technological innovations are evident in the Nihewan Basin at the onset of the Mid-Pleistocene Climate Transition (MPT). Examination of the lithic technology of the Nihewan sites, together with an assessment of other key Palaeolithic sites of China, indicates that toolkits show increasing diversity at the outset of the MPT and in its aftermath. The overall evidence indicates the adaptive flexibility of early hominins to ecosystem changes since the MPT, though regional abandonments are also apparent in high-latitudes, likely owing to cold and oscillating environmental conditions. The view presented here sharply contrasts with traditional arguments that stone tool technologies of China are homogeneous and continuous over the course of the Early Pleistocene.Introduction Results - Stone-tool-knapping skills recorded in the Cenjiawan assemblage - Technological comparisons of the Nihewan Basin assemblages Discussio

    Defining Resonance Raman Spectral Responses to Substrate Binding by Cytochrome P450 from \u3cem\u3ePseudomonas putida\u3c/em\u3e

    Get PDF
    Resonance Raman spectra are reported for substrate-free and camphor-bound cytochrome P450cam and its isotopically labeled analogues that have been reconstituted with protoheme derivatives that bear -CD3 groups at the 1, 3, 5, and 8-positions (d12-protoheme) or deuterated methine carbons (d4-protoheme). In agreement with previous studies of this and similar enzymes, substrate binding induces changes in the high frequency and low frequency spectral regions, with the most dramatic effect in the low frequency region being activation of a new mode near 367 cm−1. This substrate-activated mode had been previously assigned as a second “propionate bending” mode (Chen et al., Biochemistry, 2004, 43, 1798–1808), arising in addition to the single propionate bending mode observed for the substrate-free form at 380 cm−1. In this work, this newly activated mode is observed to shift by 8 cm−1 to lower frequency in the d12-protoheme reconstituted enzyme (i.e., the same shift as that observed for the higher frequency “propionate bending” mode) and is therefore consistent with the suggested assignment. However, the newly acquired data for the d4-protoheme substituted analogue also support an earlier alternate suggestion (Deng et al., Biochemistry, 1999, 38, 13699–13706) that substrate binding activates several heme out-of-plane modes, one of which (γ6) is accidentally degenerate with the 367 cm−1 propionate bending mode. Finally, the study of the enzyme reconstituted with the protoheme-d4, which shifts the macrocycle ν10 mode, has now allowed a definitive identification of the vinyl CC stretching modes

    Electronic Structure and Lattice dynamics of NaFeAs

    Full text link
    The similarity of the electronic structures of NaFeAs and other Fe pnictides has been demonstrated on the basis of first-principle calculations. The global double-degeneracy of electronic bands along X-M and R-A direction indicates the instability of Fe pnictides and is explained on the basis of a tight-binding model. The de Haas-van Alphen parameters for the Fermi surface (FS) of NaFeAs have been calculated. A QM=(1/2,1/2,0)\mathbf{Q}_{M}=(1/2,1/2,0) spin density wave (SDW) instead of a charge density wave (CDW) ground state is predicted based on the calculated generalized susceptibility χ(q)\chi(\mathbf{q}) and a criterion derived from a restricted Hatree-Fock model. The strongest electron-phonon (e-p) coupling has been found to involve only As, Na z-direction vibration with linear-response calculations. A possible enhancement mechanism for e-p coupling due to correlation is suggested

    Nanosecond electric pulses penetrate the nucleus and enhance speckle formation

    No full text
    Nanosecond electric pulses generate nanopores in the interior membranes of cells and modulate cellular functions. Here, we used confocal microscopy and flow cytometry to observe Smith antigen antibody (Y12) binding to nuclear speckles, known as small nuclear ribonucleoprotein particles (snRNPs) or intrachromatin granule clusters (IGCs), in Jurkat cells following one or five 10 ns, 150 kV/cm pulses. Using confocal microscopy and flow cytometry, we observed changes in nuclear speckle labeling that suggested a disruption of pre-messenger RNA splicing mechanisms. Pulse exposure increased the nuclear speckled substructures by 2.5-fold above basal levels while the propidium iodide (PI) uptake in pulsed cells was unchanged. The resulting nuclear speckle changes were also cell cycle dependent. These findings suggest that 10 ns pulses directly influenced nuclear processes, such as the changes in the nuclear RNA–protein complexes
    corecore