117 research outputs found

    INTERACTION BETWEEN ARGON AND DOPANTS IN SPUTTERED a-Si : H

    No full text
    The concentrations of As, B, H, Ar and Si in sputtered a-Si : H are measured by helium Rutherford backscattering and nuclear reactions analysis. Excess or deficit of hydrogen and argon by comparison with intrinsic a-Si : H are found in presence of dopants at high deposition rate. This is related to the plasma deposition method and would suggest micro grain structure in the deposited layer

    Optical properties of hydrogenated amorphous silicon

    Get PDF
    A detailed study of the optical properties of sputtered hydrogenated amorphous silicon films with varying hydrogen concentration is presented here. The energy dependence of the absorption coefficient is looked into, in detail, from a point of view of understanding the well known Tauc rule and the alternate relations being proposed in recent years. Spectroscopic and band‐structural models like Wemple-Didomenico and Penn are then utilized to analyze the optical parameters near the band‐gap region of the wavelength spectra. Extensive comparisons of our results are made with those of sputtered a‐Si:H films of other workers, glow discharge prepared a‐Si:H, chemically vapor deposited and evaporated a‐Si, and also crystalline silicon. The similarities in the variation of the optical properties of a‐Si:H with increasing hydrogen concentration (or decreasing measurement temperature) to that of crystalline silicon with decreasing measurement temperature lead us to interesting conclusions. Thus, it seems that decreasing disorder (topological or thermal) in a‐Si:H is equivalent to decreasing thermal disorder in c‐Si, at least as far as the disorder‐optical property relationships are concerned

    Macrorheology of cystic fibrosis, chronic obstructive pulmonary disease & normal sputum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prior microrheologic assessments of selected, microlitre plugs of cystic fibrosis (CF) sputum suggest no intrinsic rheologic abnormality. However, such analyses may not be representative of CF sputum as a whole. We therefore reassessed this question using whole sputum macrorheology. Additionally, we wished to further explore the relationships between sputum rheology, inflammation and infection.</p> <p>Methods</p> <p>Dynamic oscillatory macrorheometry was performed on whole expectorated sputum from stable adults with CF (n = 18) and COPD (n = 12) and induced sputum from normal controls (n = 7). Concomitant sputum inflammatory mediator levels were measured in CF and COPD samples. Sputum collected from CF subjects (n = 6) at commencement and completion of intravenous antibiotic therapy for an infective exacerbation was also assessed.</p> <p>Results</p> <p>CF sputum neutrophil elastase activity (NE) was significantly related to degree of sputum purulence (p = 0.049) and correlated significantly with measures of sputum viscoelasticity (r = 0.696, p = 0.008 for storage modulus G' at 9 Hz). There were significant differences in viscoelasticity between subject groups when samples were compared irrespective of appearance/degree of sputum purulence. However, the macrorheology of mucoid CF sputum did not differ from normal sputum (eg median (range) G' at 9 Hz 2.25 (0.79, 3.26) vs 2.04 (1.4,4.6) Pa, p = 1). In contrast, mucoid COPD samples demonstrated significantly greater viscoelasticity (G' at 9 Hz 4.5 (2.4, 23) Pa) than sputum from both CF (p = 0.048) & normal subjects (p = 0.009). Antibiotic therapy during exacerbations was associated with significant reductions in CF sputum viscoelasticity, with mean (SD) G' at 9 Hz decreasing from 28.5 (11.5) Pa at commencement to 6.4 (4.6) Pa on day 7 (p = 0.01).</p> <p>Conclusion</p> <p>The macrorheologic properties of whole, mucoid CF sputum are not different from normal, confirming the results of prior microrheologic studies. Instead, CF sputum viscoelasticity is related to secondary infection, decreases with intravenous antibiotic therapy and correlates with inflammation. In contrast, COPD sputum demonstrates inherently greater viscoelasticity, providing a novel target for potential therapeutic interventions.</p

    Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC

    No full text
    CVD diamond shows promising properties for use as a position sensitive detector for experiments in the highest radiation areas at the Large Hadron Collider. In order to study the radiation hardn ess of diamond we exposed CVD diamond detector samples to 24~GeV/cc and 500~MeV protons up to a fluence of 5×1015 p/cm25\times 10^{15}~p/{\rm cm^2}. We measured the charge collection distance, the ave rage distance electron hole pairs move apart in an external electric field, and leakage currents before, during, and after irradiation. The charge collection distance remains unchanged up to 1 times1015 p/cm21\ times 10^{15}~p/{\rm cm^2} and decreases by ≈\approx40~\% at 5×1015 p/cm25\times 10^{15}~p/{\rm cm^2}. Leakage currents of diamond samples were below 1~pA before and after irradiation. The particle indu ced currents during irradiation correlate well with the proton flux. In contrast to diamond, a silicon diode, which was irradiated for comparison, shows the known large increase in leakage curren t. We conclude that CVD diamond detectors are radiation hard to 24~GeV/cc and 500~MeV protons up to at least 1×1015 p/cm21\times 10^{15}~p/{\rm cm^2} without signal loss

    Performance of irradiated CVD diamond micro-strip sensors

    Get PDF
    CVD diamond detectors are of interest for charged particle detection and tracking due to their high radiation tolerance. In this article we present, for the first time, beam test results from recently manufactured CVD diamond strip detectors and their behavior under low doses of electrons from a ÎČ\beta-source and the performance before and after intense (>1015/cm2>10^{15}/{\rm cm^2}) proton- and pion-irradiations. We find that low dose irradiations increase the signal-to-noise ratio (pumping of the signal) and slightly deteriorate the spatial resolution. Intense irradiations with protons (2.2×1015 p/cm22.2\times 10^{15}~p/{\rm cm^2}) lowers the signal-to-noise ratio slightly. Intense irradiation with pions (2.9×1015 π/cm22.9\times 10^{15}~\pi/{\rm cm^2}) lowers the signal-to-noise ratio more. The spatial resolution of the diamond sensors improves after irradiations

    Proton Irradiation of CVD Diamond Detectors for High Luminosity Experiments at the LHC

    Get PDF
    CVD diamond shows promising properties for use as a position sensitive detector for experiments in the highest radiation areas at the Large Hadron Collider. In order to study the radiation hardn ess of diamond we exposed CVD diamond detector samples to 24~GeV/cc and 500~MeV protons up to a fluence of 5×1015 p/cm25\times 10^{15}~p/{\rm cm^2}. We measured the charge collection distance, the ave rage distance electron hole pairs move apart in an external electric field, and leakage currents before, during, and after irradiation. The charge collection distance remains unchanged up to 1 times1015 p/cm21\ times 10^{15}~p/{\rm cm^2} and decreases by ≈\approx40~\% at 5×1015 p/cm25\times 10^{15}~p/{\rm cm^2}. Leakage currents of diamond samples were below 1~pA before and after irradiation. The particle indu ced currents during irradiation correlate well with the proton flux. In contrast to diamond, a silicon diode, which was irradiated for comparison, shows the known large increase in leakage curren t. We conclude that CVD diamond detectors are radiation hard to 24~GeV/cc and 500~MeV protons up to at least 1×1015 p/cm21\times 10^{15}~p/{\rm cm^2} without signal loss
    • 

    corecore