764 research outputs found

    Fatty-acid uptake in prostate cancer cells using dynamic microfluidic raman technology

    Get PDF
    It is known that intake of dietary fatty acid (FA) is strongly correlated with prostate cancer progression but is highly dependent on the type of FAs. High levels of palmitic acid (PA) or arachidonic acid (AA) can stimulate the progression of cancer. In this study, a unique experimental set-up consisting of a Raman microscope, coupled with a commercial shear-flow microfluidic system is used to monitor fatty acid uptake by prostate cancer (PC-3) cells in real-time at the single cell level. Uptake of deuterated PA, deuterated AA, and the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were monitored using this new system, while complementary flow cytometry experiments using Nile red staining, were also conducted for the validation of the cellular lipid uptake. Using this novel experimental system, we show that DHA and EPA have inhibitory effects on the uptake of PA and AA by PC-3 cells

    Probability as a physical motive

    Full text link
    Recent theoretical progress in nonequilibrium thermodynamics, linking the physical principle of Maximum Entropy Production ("MEP") to the information-theoretical "MaxEnt" principle of scientific inference, together with conjectures from theoretical physics that there may be no fundamental causal laws but only probabilities for physical processes, and from evolutionary theory that biological systems expand "the adjacent possible" as rapidly as possible, all lend credence to the proposition that probability should be recognized as a fundamental physical motive. It is further proposed that spatial order and temporal order are two aspects of the same thing, and that this is the essence of the second law of thermodynamics.Comment: Replaced at the request of the publisher. Minor corrections to references and to Equation 1 added

    Increased optical pathlength through aqueous media for the infrared microanalysis of live cells

    Get PDF
    The study of live cells using Fourier transform infrared spectroscopy (FTIR) and FTIR microspectroscopy (FT-IRMS) intrinsically yields more information about cell metabolism than comparable experiments using dried or chemically fixed samples. There are, however, a number of barriers to obtaining high-quality vibrational spectra of live cells, including correction for the significant contributions of water bands to the spectra, and the physical stresses placed upon cells by compression in short pathlength sample holders. In this study, we present a water correction method that is able to result in good-quality cell spectra from water layers of 10 and 12 μm and demonstrate that sufficient biological detail is retained to separate spectra of live cells based upon their exposure to different novel anti-cancer agents. The IR brilliance of a synchrotron radiation (SR) source overcomes the problem of the strong water absorption and provides cell spectra with good signal-to-noise ratio for further analysis. Supervised multivariate analysis (MVA) and investigation of average spectra have shown significant separation between control cells and cells treated with the DNA cross-linker PL63 on the basis of phosphate and DNA-related signatures. Meanwhile, the same control cells can be significantly distinguished from cells treated with the protein kinase inhibitor YA1 based on changes in the amide II region. Each of these separations can be linked directly to the known biochemical mode of action of each agent. Keywords: Synchrotron radiation (SR), Fourier transform infrared spectroscopy (FTIR), Infrared microspectroscopy (IRMS), Cancer, Single cell, Drug-cell interaction

    Inference of analytical thermodynamic models for biological networks

    Get PDF
    We present an automated algorithm for inferring analytical models of closed reactive biochemical mixtures, on the basis of standard approaches borrowed from thermodynamics and kinetic theory of gases. As an input, the method requires a number of steady states (i.e. an equilibria cloud in the phase-space), and at least one time series of measurements for each species. Validations are discussed for both the Michaelis-Menten mechanism (four species, two conservation laws) and the mitogen-activated protein kinase - MAPK - mechanism (eleven species, three conservation laws

    Live single cell analysis using synchrotron FTIR microspectroscopy: development of a simple dynamic flow system for prolonged sample viability

    Get PDF
    Synchrotron radiation Fourier transform infrared microspectroscopy (SR-microFTIR) of live biological cells has the potential to provide far greater biochemical and morphological detail than equivalent studies using dehydrated, chemically-fixed single cells. Attempts to measure live cells using microFTIR are complicated by the aqueous environment required and corresponding strong infrared absorbance by water. There is also the additional problem of the limited lifetime of the cells outside of their preferred culture environment. In this work, we outline simple, cost-effective modifications to a commercially available liquid sample holder to perform single live cell analysis under an IR microscope and demonstrate cell viability up to at least 24 hours. A study using this system in which live cells have been measured at increasing temperature has shown spectral changes in protein bands attributed to α-β transition, consistent with other published work, and proves the ability to simultaneously induce and measure biochemical changes. An additional study of deuterated palmitic acid (D31-PA) uptake at different timepoints has made use of over 200 individual IR spectra collected over ∼4 hours, taking advantage of the ability to maintain viable cell samples for longer periods of time in the measurement environment, and therefore acquire greatly increased numbers of spectra without compromising on spectral quality. Further developments of this system are planned to widen the range of possible experiments, and incorporate more complex studies, including drug-cell interaction

    Pipeline network features and leak detection by cross-correlation analysis of reflected waves

    Get PDF
    This paper describes progress on a new technique to detect pipeline features and leaks using signal processing of a pressure wave measurement. Previous work (by the present authors) has shown that the analysis of pressure wave reflections in fluid pipe networks can be used to identify specific pipeline features such as open ends, closed ends, valves, junctions, and certain types of bends. It was demonstrated that by using an extension of cross-correlation analysis, the identification of features can be achieved using fewer sensors than are traditionally employed. The key to the effectiveness of the technique lies in the artificial generation of pressure waves using a solenoid valve, rather than relying upon natural sources of fluid excitation. This paper uses an enhanced signal processing technique to improve the detection of leaks. It is shown experimentally that features and leaks can be detected around a sharp bend and up to seven reflections from features/ leaks can be detected, by which time the wave has traveled over 95 m. The testing determined the position of a leak to within an accuracy of 5%, even when the location of the reflection from a leak is itself dispersed over a certain distance and, therefore, does not cause an exact reflection of the wave

    Open-flow mixing: Experimental evidence for strange eigenmodes

    Full text link
    We investigate experimentally the mixing dynamics in a channel flow with a finite stirring region undergoing chaotic advection. We study the homogenization of dye in two variants of an eggbeater stirring protocol that differ in the extent of their mixing region. In the first case, the mixing region is separated from the side walls of the channel, while in the second it extends to the walls. For the first case, we observe the onset of a permanent concentration pattern that repeats over time with decaying intensity. A quantitative analysis of the concentration field of dye confirms the convergence to a self-similar pattern, akin to the strange eigenmodes previously observed in closed flows. We model this phenomenon using an idealized map, where an analysis of the mixing dynamics explains the convergence to an eigenmode. In contrast, for the second case the presence of no-slip walls and separation points on the frontier of the mixing region leads to non-self-similar mixing dynamics.Comment: 12 pages, 8 figures

    Consistent thermodynamics for spin echoes

    Full text link
    Spin-echo experiments are often said to constitute an instant of anti-thermodynamic behavior in a concrete physical system that violates the second law of thermodynamics. We argue that a proper thermodynamic treatment of the effect should take into account the correlations between the spin and translational degrees of freedom of the molecules. To this end, we construct an entropy functional using Boltzmann macrostates that incorporates both spin and translational degrees of freedom. With this definition there is nothing special in the thermodynamics of spin echoes: dephasing corresponds to Hamiltonian evolution and leaves the entropy unchanged; dissipation increases the entropy. In particular, there is no phase of entropy decrease in the echo. We also discuss the definition of macrostates from the underlying quantum theory and we show that the decay of net magnetization provides a faithful measure of entropy change.Comment: 15 pages, 2 figs. Changed figures, version to appear in PR

    Boltzmann-Shannon Entropy: Generalization and Application

    Get PDF
    The paper deals with the generalization of both Boltzmann entropy and distribution in the light of most-probable interpretation of statistical equilibrium. The statistical analysis of the generalized entropy and distribution leads to some new interesting results of significant physical importance.Comment: 5 pages, Accepted in Mod.Phys.Lett.

    3D DESI-MS lipid imaging in a xenograft model of glioblastoma : a proof of principle

    Get PDF
    Desorption electrospray ionisation mass spectrometry (DESI-MS) can image hundreds of molecules in a 2D tissue section, making it an ideal tool for mapping tumour heterogeneity. Tumour lipid metabolism has gained increasing attention over the past decade; and here, lipid heterogeneity has been visualised in a glioblastoma xenograft tumour using 3D DESI-MS imaging. The use of an automatic slide loader automates 3D imaging for high sample-throughput. Glioblastomas are highly aggressive primary brain tumours, which display heterogeneous characteristics and are resistant to chemotherapy and radiotherapy. It is therefore important to understand biochemical contributions to their heterogeneity, which may be contributing to treatment resistance. Adjacent sections to those used for DESI-MS imaging were used for H&E staining and immunofluorescence to identify different histological regions, and areas of hypoxia. Comparing DESI-MS imaging with biological staining allowed association of different lipid species with hypoxic and viable tissue within the tumour, and hence mapping of molecularly different tumour regions in 3D space. This work highlights that lipids are playing an important role in the heterogeneity of this xenograft tumour model, and DESI-MS imaging can be used for lipid 3D imaging in an automated fashion to reveal heterogeneity, which is not apparent in H&E stains alone
    • …
    corecore