21 research outputs found

    Sub-barrier fusion cross section measurements with STELLA

    Get PDF
    The experimental setup STELLA (STELlar LAboratory) is designed for the measurement of deep sub-barrier light heavy ion fusion cross sections. For background suppression the γ-particle coincidence technique is used. In this project, LaBr3 detectors from the UK FATIMA (FAst TIMing Array) collaboration are combined with annular silicon strip detectors customized at IPHC-CNRS, Strasbourg, and the setup is located at Andromùde, IPN, Orsay. The commissioning of the experimental approach as well as a sub-barrier 12C +12C → 24Mg∗ cross section measurement campaign are carried out

    Beam test performance of a prototype module with Short Strip ASICs for the CMS HL-LHC tracker upgrade

    Get PDF
    The Short Strip ASIC (SSA) is one of the four front-end chips designed for the upgrade of the CMS Outer Tracker for the High Luminosity LHC. Together with the Macro-Pixel ASIC (MPA) it will instrument modules containing a strip and a macro-pixel sensor stacked on top of each other. The SSA provides both full readout of the strip hit information when triggered, and, together with the MPA, correlated clusters called stubs from the two sensors for use by the CMS Level-1 (L1) trigger system. Results from the first prototype module consisting of a sensor and two SSA chips are presented. The prototype module has been characterized at the Fermilab Test Beam Facility using a 120 GeV proton beam

    Selection of the silicon sensor thickness for the Phase-2 upgrade of the CMS Outer Tracker

    Get PDF
    During the operation of the CMS experiment at the High-Luminosity LHC the silicon sensors of the Phase-2 Outer Tracker will be exposed to radiation levels that could potentially deteriorate their performance. Previous studies had determined that planar float zone silicon with n-doped strips on a p-doped substrate was preferred over p-doped strips on an n-doped substrate. The last step in evaluating the optimal design for the mass production of about 200 m2^{2} of silicon sensors was to compare sensors of baseline thickness (about 300 ÎŒm) to thinned sensors (about 240 ÎŒm), which promised several benefits at high radiation levels because of the higher electric fields at the same bias voltage. This study provides a direct comparison of these two thicknesses in terms of sensor characteristics as well as charge collection and hit efficiency for fluences up to 1.5 × 1015^{15} neq_{eq}/cm2^{2}. The measurement results demonstrate that sensors with about 300 ÎŒm thickness will ensure excellent tracking performance even at the highest considered fluence levels expected for the Phase-2 Outer Tracker

    The CMS Phase-1 pixel detector upgrade

    Get PDF
    The CMS detector at the CERN LHC features a silicon pixel detector as its innermost subdetector. The original CMS pixel detector has been replaced with an upgraded pixel system (CMS Phase-1 pixel detector) in the extended year-end technical stop of the LHC in 2016/2017. The upgraded CMS pixel detector is designed to cope with the higher instantaneous luminosities that have been achieved by the LHC after the upgrades to the accelerator during the first long shutdown in 2013–2014. Compared to the original pixel detector, the upgraded detector has a better tracking performance and lower mass with four barrel layers and three endcap disks on each side to provide hit coverage up to an absolute value of pseudorapidity of 2.5. This paper describes the design and construction of the CMS Phase-1 pixel detector as well as its performance from commissioning to early operation in collision data-taking.Peer reviewe

    Rapid Discovery and Detection of Haemaphysalis longicornis through the Use of Passive Surveillance and Collaboration: Building a State Tick-Surveillance Network

    No full text
    Between March 2019 and February 2020, Asian long-horned ticks (Haemaphysalis longicornis Neumann, 1901) were discovered and collected for the first time in one middle and seven eastern Tennessee counties, facilitated by a newly developed passive and collaborative tick-surveillance network. Network collaborators included federal, state, county, university, and private resource personnel working with companion animals, livestock, and wildlife. Specimens were collected primarily from dogs and cattle, with initial detections of female adult stage ticks by stakeholders associated with parasitology positions (e.g., entomologists and veterinary parasitologists). Initial county tick detections were confirmed with morphological and molecular identifications, and then screened for the presence of animal-associated pathogens (Anaplasma marginale, Babesia species, Ehrlichia species, and Theileria orientalis), for which all tests were negative. Herein, we describe the identification and confirmation of these tick specimens as well as other results of the surveillance collaboration

    Beam test performance of a prototype module with Short Strip ASICs for the CMS HL-LHC tracker upgrade

    No full text
    The Short Strip ASIC (SSA) is one of the four front-end chips designed for the upgrade of the CMS Outer Tracker for the High Luminosity LHC. Together with the Macro-Pixel ASIC (MPA) it will instrument modules containing a strip and a macro-pixel sensor stacked on top of each other. The SSA provides both full readout of the strip hit information when triggered, and, together with the MPA, correlated clusters called stubs from the two sensors for use by the CMS Level-1 (L1) trigger system. Results from the first prototype module consisting of a sensor and two SSA chips are presented. The prototype module has been characterized at the Fermilab Test Beam Facility using a 120 GeV proton beam

    Beam test performance of a prototype module with Short Strip ASICs for the CMS HL-LHC tracker upgrade

    No full text

    Comparative evaluation of analogue front-end designs for the CMS Inner Tracker at the High Luminosity LHC

    No full text

    Beam test performance of a prototype module with Short Strip ASICs for the CMS HL-LHC tracker upgrade

    No full text
    International audienceThe Short Strip ASIC (SSA) is one of the four front-endchips designed for the upgrade of the CMS Outer Tracker for the HighLuminosity LHC. Together with the Macro-Pixel ASIC (MPA) it willinstrument modules containing a strip and a macro-pixel sensorstacked on top of each other. The SSA provides both full readout ofthe strip hit information when triggered, and, together with theMPA, correlated clusters called stubs from the two sensors for useby the CMS Level-1 (L1) trigger system. Results from the firstprototype module consisting of a sensor and two SSA chips arepresented. The prototype module has been characterized at theFermilab Test Beam Facility using a 120 GeV proton beam
    corecore