10 research outputs found

    The mammary factor MPBF is a prolactin-induced transcriptional regulator which binds to STAT factor recognition sites

    Get PDF
    AbstractSite-directed mutagenesis of the three binding sites for the mammary factor MPBF in the β-lactoglobulin (BLG) promoter demonstrates that MPBF is a transcriptional activator of the BLG gene in mammary cells. MPBF requires phosphorylation on tyrosine for maximum binding activity and binds to GAS (interferon γ-activation site) elements which are similar to the MPBF binding sites. Prolactin induces MPBF binding activity in CHO cells and is not antigenically related to Stat1 (p91) and Stat2 (p113), suggesting that this transcription factor is likely to be another member of the STAT family of cytokine/growth factor-induced transcription factors

    Three-dimensional structure and ligand binding properties of trichosurin, a metatherian lipocalin from the milk whey of the common brushtail possum Trichosurus vulpecula

    No full text
    Lipocalins are extracellular proteins (17–25 kDa) that bind and transport small lipophilic molecules. The three-dimensional structure of the first lipocalin from a metatherian has been determined at different values of pH both with and without bound ligands. Trichosurin, a protein from the milk whey of the common brushtail possum, Trichosurus vulpecula, has been recombinantly expressed in Escherichia coli, refolded from inclusion bodies, purified and crystallized at two different pH values. The three-dimensional structure of trichosurin was solved by X-ray crystallography in two different crystal forms to 1.9 Å (1 Å=0.1 nm) and 2.6 Å resolution, from crystals grown at low and high pH values respectively. Trichosurin has the typical lipocalin fold, an eight-stranded anti-parallel β-barrel but dimerizes in an orientation that has not been seen previously. The putative binding pocket in the centre of the β-barrel is well-defined in both high and low pH structures and is occupied by water molecules along with isopropanol molecules from the crystallization medium. Trichosurin was also co-crystallized with a number of small molecule ligands and structures were determined with 2-naphthol and 4-ethylphenol bound in the centre of the β-barrel. The binding of phenolic compounds by trichosurin provides clues to the function of this important marsupial milk protein, which is highly conserved across metatherians

    Characterization of a family of ice-active proteins from the Ryegrass, Lolium perenne

    No full text
    Five genes coding for ice-active proteins were identified from an expressed sequence tag database of Lolium perenne cDNA libraries. Each of the five genes were characterized by the presence of an N-terminal signal peptide, a region enriched in hydrophilic amino acids and a leucine-rich region in four of the five genes that is homologous with the receptor domain of receptor-like protein kinases of plants. The C-terminal region of all five genes contains sequence homologous with Lolium and Triticum ice-active proteins. Of the four ice-active proteins (IAP1, IAP2, IAP3 and IAP5) cloned, three could be expressed in Escherichia coli and recovered in a functional form in order to study their ice activity. All three ice-active proteins had recrystallization inhibition activity but showed no detectable antifreeze or ice nucleation activity at the concentration tested. IAP2 and LAP5 formed distinct hexagonal-shaped crystals in the nanolitre osmometer as compared to the weakly hexagonal crystals produced by IAP3
    corecore