15 research outputs found

    The 2013 European Seismic Hazard Model: key components and results

    Get PDF
    The 2013 European Seismic Hazard Model (ESHM13) results from a community-based probabilistic seismic hazard assessment supported by the EU-FP7 project “Seismic Hazard Harmonization in Europe” (SHARE, 2009–2013). The ESHM13 is a consistent seismic hazard model for Europe and Turkey which overcomes the limitation of national borders and includes a through quantification of the uncertainties. It is the first completed regional effort contributing to the “Global Earthquake Model” initiative. It might serve as a reference model for various applications, from earthquake preparedness to earthquake risk mitigation strategies, including the update of the European seismic regulations for building design (Eurocode 8), and thus it is useful for future safety assessment and improvement of private and public buildings. Although its results constitute a reference for Europe, they do not replace the existing national design regulations that are in place for seismic design and construction of buildings. The ESHM13 represents a significant improvement compared to previous efforts as it is based on (1) the compilation of updated and harmonised versions of the databases required for probabilistic seismic hazard assessment, (2) the adoption of standard procedures and robust methods, especially for expert elicitation and consensus building among hundreds of European experts, (3) the multi-disciplinary input from all branches of earthquake science and engineering, (4) the direct involvement of the CEN/TC250/SC8 committee in defining output specifications relevant for Eurocode 8 and (5) the accounting for epistemic uncertainties of model components and hazard results. Furthermore, enormous effort was devoted to transparently document and ensure open availability of all data, results and methods through the European Facility for Earthquake Hazard and Risk (www.​efehr.​org)

    The 2014 Earthquake Model of the Middle East: seismogenic sources

    Get PDF
    The Earthquake Model of Middle East (EMME) project was carried out between 2010 and 2014 to provide a harmonized seismic hazard assessment without country border limitations. The result covers eleven countries: Afghanistan, Armenia, Azerbaijan, Cyprus, Georgia, Iran, Jordan, Lebanon, Pakistan, Syria and Turkey, which span one of the seismically most active regions on Earth in response to complex interactions between four major tectonic plates i.e. Africa, Arabia, India and Eurasia. Destructive earthquakes with great loss of life and property are frequent within this region, as exemplified by the recent events of Izmit (Turkey, 1999), Bam (Iran, 2003), Kashmir (Pakistan, 2005), Van (Turkey, 2011), and Hindu Kush (Afghanistan, 2015). We summarize multidisciplinary data (seismicity, geology, and tectonics) compiled and used to characterize the spatial and temporal distribution of earthquakes over the investigated region. We describe the development process of the model including the delineation of seismogenic sources and the description of methods and parameters of earthquake recurrence models, all representing the current state of knowledge and practice in seismic hazard assessment. The resulting seismogenic source model includes seismic sources defined by geological evidence and active tectonic findings correlated with measured seismicity patterns. A total of 234 area sources fully cross-border-harmonized are combined with 778 seismically active faults along with background-smoothed seismicity. Recorded seismicity (both historical and instrumental) provides the input to estimate rates of earthquakes for area sources and background seismicity while geologic slip-rates are used to characterize fault-specific earthquake recurrences. Ultimately, alternative models of intrinsic uncertainties of data, procedures and models are considered when used for calculation of the seismic hazard. At variance to previous models of the EMME region, we provide a homogeneous seismic source model representing a consistent basis for the next generation of seismic hazard models within the region.Published3465-34966T. Studi di pericolosità sismica e da maremotoJCR Journa

    Near-Fault Earthquake Ground Motion and Seismic Isolation Design

    No full text
    Seismic isolation is one of the most reliable passive structural control techniques with adequately established standards for the earthquake protection of structures from earthquakes. However, it has been shown that the seismic isolation systems may not function the best for the near-fault ground motions, since in the proximity of a capable fault, the ground motions are significantly affected by the rupture mechanism and may generate high demands on the isolation system and the structure. In fact, several earthquake resistant design codes state that the seismically isolated structures located at near-fault sites should be designed by considering larger seismic demands than the demand on structures at far-field sites. When the fault ruptures in forward direction to the site most of the seismic energy arrives in coherent long-period ground velocity pulses. The ground-motion prediction equations (GMPEs) typically cannot account for such effects with limited distance metrics and lack adequate data at large magnitudes and near distances. For the reliable earthquake design of the isolated structure in near fault conditions that meets the performance objectives, the 3D design basis ground motion(s) need to be appropriately assessed. Measures in the design of the isolation system, such as modifications in the stiffness and damping characteristics, as well as in the limitation of vertical effects are needed. The behavior of the base-isolated buildings under near-fault (NF) ground motions with fling-step and forward-directivity characteristics are investigated with a rational assessment of design-basis near-fault ground motion, are investigated in a parametric format. The parametric study includes several variables, including the structural system flexibility; number of stories; isolation system characteristic (yield) strength, and the isolation periods related to the post-elastic stiffness. Furthermore, the effect of additional damping by viscous dampers were tested for some selected cases. Important findings observed from the parametric performance results and the overall conclusions of the study are provided.Politecnico TorinoWOS:0009635759000092-s2.0-85148693217Conference Proceedings Citation Index – ScienceProceedings PaperUluslararası işbirliği ile yapılmayan - HAYIRNisan2023YÖK - 2022-2

    A probabilistic seismic hazard assessment for the Turkish territory: part II-fault source and background seismicity model

    No full text
    WOS: 000438615600008Over the years, several local and regional seismic hazard studies have been conducted for the estimation of the seismic hazard in Turkey using different statistical processing tools for instrumental and historical earthquake data and modeling the geologic and tectonic characteristics of the region. Recently developed techniques, increased knowledge and improved databases brought the necessity to review the national active fault database and the compiled earthquake catalogue for the development of a national earthquake hazard map. A national earthquake strategy and action plan were conceived and accordingly with the collaboration of the several institutions and expert researchers, the Revision of Turkish Seismic Hazard Map Project (UDAP-C-13-06) was initiated, and finalized at the end of 2014. The scope of the project was confined to the revision of current national seismic hazard map, using the state of the art technologies and knowledge of the active fault, earthquake database, and ground motion prediction equations. The following two seismic source zonation models are developed for the probabilistic earthquake hazard analysis: (1) Area source model, (2) Fault and spatial smoothing seismic source model (FSBCK). In this study, we focus on the development and the characterization of the Fault Source model, the background spatially smoothed seismicity model and intrinsic uncertainty on the earthquake occurrence-rates-estimation. Finally, PSHA results obtained from the fault and spatial smoothed seismic source model are presented for 43, 72, 475 and 2475 years return periods (corresponding to 69, 50, 10, and 2% probability of exceedance in 50 years) for PGA and 5% damped spectral accelerations at 0.2 and 1.0 s.AFAD (Disaster and Emergency Management Authority of Turkey) [UDAP-C-13-16]First, we would like to express our gratitude to Sinan Akkar for his kind coordination of the project titled as "The update of the seismic hazard maps of Turkey'', and to Mustafa Erdik for his suggestions and comments, which helped us to considerably improve the project. We would like to thank various local researchers who gave us feedback and comments: Tolga Yilmaz, Ahmet Yakut, from Middle East Technical University; Murat Utkucu from Sakarya University. We also acknowledge Laurentiu Danciu from ETHZ, Roberto Basili from INGV, and Tuba Eroglu Azak who wrote and improved the codes and some scripts used in the calculation of some parameters. The study has been sponsored by AFAD (Disaster and Emergency Management Authority of Turkey) under Project Code UDAP-C-13-16. We would also like to thank Dr. Baumont for his review and suggestions for the improvement of the manuscript

    A probabilistic seismic hazard assessment for the Turkish territory-part I: the area source model

    No full text
    WOS: 000438615600007The seismic zoning map of Turkey that is used in connection with the national seismic design code (versions issued both in 1997 and 2007) is based on a probabilistic seismic hazard assessment study conducted more than 20 years ago (Gulkan et al. in En son verilere gore hazA +/- rlanan Turkiye deprem bolgeleri haritasA +/-, Report No: METU/EERC 93-1, 1993). In line with the efforts for the update of the seismic design code, the need aroused for an updated seismic hazard map, incorporating recent data and state-of-the-art methodologies and providing ground motion parameters required for the construction of the design spectra stipulated by the new Turkish Earthquake Design Code. Supported by AFAD (Disaster and Emergency Management Authority of Turkey), a project has been conducted for the country scale assessment of the seismic hazard by probabilistic methods. The present paper describes the probabilistic seismic hazard assessment study conducted in connection with this project, incorporating in an area source model, all recently compiled data on seismicity and active faulting, and using a set of recently developed ground motion prediction equations, for both active shallow crustal and subduction regimes, evaluated as adequately representing the ground motion characteristics in the region. The area sources delineated in the model are fully parameterized in terms of maximum magnitude, depth distribution, predominant strike and dip angles and mechanism of possible ruptures. Resulting ground motion distributions are quantified and presented for PGA and 5 % damped spectral accelerations at T = 0.2 and 1.0 s, associated with return periods of 475 and 2475 years. The full set of seismic hazard curves was also made available for the hazard computation sites. The second part of the study, which is based on a fault source and smoothed seismicity model is covered in Demircioglu et al. in Bull Earthq Eng, (2016).AFAD (Disaster and Emergency Management Authority of Turkey) [UDAP-C-13-16]We would like to express our gratitude to Sinan Akkar for having initiated this collaborative effort for the update of the seismic hazard maps of Turkey, to Mustafa Erdik for his invaluable suggestions and guidance throughout the study, and to the participants of the various work packages for their active contributions to the discussions during the course of the project. The study has been sponsored by AFAD (Disaster and Emergency Management Authority of Turkey) under Project Code UDAP-C-13-16. We would also like to thank Gabriele Ameri for his review and suggestions for the improvement of the manuscript

    Seismic hazard map of the Middle East

    No full text
    The collaborative project Earthquake Model of the Middle East (EMME, 2010-2015) brought together scientists and engineers from the leading research institutions in the region and delivered state-of-the-art seismic hazard assessment covering Afghanistan, Armenia, Azerbaijan, Cyprus, Georgia, Iran, Iraq, Jordan, Lebanon, Palestine, Pakistan, Syria and Turkey. Their efforts have been materialized in the first homogenized seismic hazard model comprising earthquake catalogues, mapped active faults, strong motions databank, ground motion models and the estimated ground motion values for various intensity measure types and relevant return periods (e.g. 475-5000 years). The reference seismic hazard map of the Middle East, depicts the mean values of peak ground acceleration with a 10% chance of exceedance in 50 years, corresponding to a mean return period of 475 years. A full resolution poster is provided with this contribution

    Peloidotherapy in rheumatoid arthritis: a pilot randomized clinical trial

    No full text
    To evaluate the additional effect and safety of peloidotherapy to usual care at short- and middle-term in patients with rheumatoid arthritis (RA). RA patients were recruited in the medical ecology and hydroclimatology department of Istanbul Medical Faculty and were randomized into two parallel groups. Peloidotherapy group was treated with heated mudpack (41-42 degrees C) on painful and active joints (5 days/week, during 2 weeks) + usual care. Control group received usual care alone. Randomization was performed by using a computer-generated table of random numbers and was blinded. The sequence was concealed until interventions were assigned. The investigator was blinded. The assessments were done before and after the intervention, 1 month and 3 months after the completion of treatment. The main criterion was the number of patients with low disease activity (DAS 28 <= 3.2) at the end of follow-up. Other judgment criteria were pain (VAS), patient's global assessment (VAS), physician's global assessment (VAS), Health Assessment Questionnaire (HAQ), Disease Activity Score (DAS 28), CRP, and ESR. Fifty-six patients were recruited and analyzed: 29 in peloidotherapy group and 27 in the control group between 11/2011 and 02/2012. At the third month, 9/29 patients were with low disease activity in peloidotherapy group and 4/27 in the control group (p = 0.15). There was a statistically significant improvement in favor of peloidotherapy group for HAQ during all follow-up period (0.25 vs 0.63, p = 0.007 at the end of the treatment, 0.29 vs 0.68 p = 0.007 at the 1st month and 0.30 vs 0.59, p = 0.040 at the 3(rd) month). Pain (35vs50, p = 0.028), patient's global assessment (37vs53, p = 0.028), physician's global assessment (33vs48, p = 0.030), and DAS28 (3.76vs4.58, p = 0.049) improved significantly more in peloidotherapy group at the 3(rd) month. There were no between group differences for ESR and CRP. There were no important adverse events. There is no significant improvement for the main criteria so we can't conclude that peloidotherapy has additional effect over usual care. But most of the other judgment criteria improved more in the peloidotherapy group than in the control group and peloidotherapy was well tolerated. A trial with higher statistical power is necessary to if we want to reveal the effects on disease activity and confirm the short and middle term efficiency of this treatment modality on pain and quality of life

    Rapid earthquake hazard and loss assessment for Euro-Mediterranean region

    No full text
    The almost-real time estimation of ground shaking and losses after a major earthquake in the Euro-Mediterranean region was performed in the framework of the Joint Research Activity 3 (JRA-3) component of the EU FP6 Project entitled "Network of Research Infra-structures for European Seismology, NERIES". This project consists of finding the most likely location of the earthquake source by estimating the fault rupture parameters on the basis of rapid inversion of data from on-line regional broadband stations. It also includes an estimation of the spatial distribution of selected site-specific ground motion parameters at engineering bedrock through region-specific ground motion prediction equations (GMPEs) or physical simulation of ground motion. By using the Earthquake Loss Estimation Routine (ELER) software, the multi-level methodology developed for real time estimation of losses is capable of incorporating regional variability and sources of uncertainty stemming from GMPEs, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships

    The 2013 European Seismic Hazard Model: key components and results

    No full text
    The 2013 European Seismic Hazard Model (ESHM13) results from a community-based probabilistic seismic hazard assessment supported by the EU-FP7 project "Seismic Hazard Harmonization in Europe” (SHARE, 2009-2013). The ESHM13 is a consistent seismic hazard model for Europe and Turkey which overcomes the limitation of national borders and includes a through quantification of the uncertainties. It is the first completed regional effort contributing to the "Global Earthquake Model” initiative. It might serve as a reference model for various applications, from earthquake preparedness to earthquake risk mitigation strategies, including the update of the European seismic regulations for building design (Eurocode 8), and thus it is useful for future safety assessment and improvement of private and public buildings. Although its results constitute a reference for Europe, they do not replace the existing national design regulations that are in place for seismic design and construction of buildings. The ESHM13 represents a significant improvement compared to previous efforts as it is based on (1) the compilation of updated and harmonised versions of the databases required for probabilistic seismic hazard assessment, (2) the adoption of standard procedures and robust methods, especially for expert elicitation and consensus building among hundreds of European experts, (3) the multi-disciplinary input from all branches of earthquake science and engineering, (4) the direct involvement of the CEN/TC250/SC8 committee in defining output specifications relevant for Eurocode 8 and (5) the accounting for epistemic uncertainties of model components and hazard results. Furthermore, enormous effort was devoted to transparently document and ensure open availability of all data, results and methods through the European Facility for Earthquake Hazard and Risk ( www.efehr.org )
    corecore