1,611 research outputs found

    Vortex Noise from Rotating Cylindrical Rods

    Get PDF
    A series of round rods of the some diameter were rotated individually about the mid-point of each rod. Vortices are shed from the rods when in motion, giving rise to the emission of sound. With the rotating system placed in the open air, the distribution of sound in space, the acoustical power output, and the spectral distribution have been studied. The frequency of emission of vortices from any point on the rod is given by the formula von Karman. From the spectrum estimates are made of the distribution of acoustical power along the rod, the amount of air concerned in sound production, the "equivalent size" of the vortices, and the acoustical energy content for each vortex

    Noise from propellers with symmetrical sections at zero blade angle, II

    Get PDF
    In a previous paper (Technical Note No. 605), a theory was developed that required an empirical relation to calculate sound pressures for the higher harmonics. Further investigation indicated that the modified theory agrees with experiment and that the empirical relation was due to an interference phenomenon peculiar to the test arrangement used. Comparison is made between the test results for a two-blade arrangement and the theory. The comparison is made for sound pressures in the plane of the revolving blades for varying values of tip velocity. Comparison is also made at constant tip velocity for all values of azimuth angle B. A further check is made between the theory and the experimental results for the fundamental of a four-blade arrangement with blades of the same dimensions as those used in the two-blade arrangement

    Noise from Propellers with Symmetrical Sections at Zero Blade Angle

    Get PDF
    A theory has been deduced for the "rotation noise" from a propeller with blades of symmetrical section about the chord line and set at zero blade angle. Owing to the limitation of the theory, the equations give without appreciable error only the sound pressure for cases where the wave lengths are large compared with the blade lengths. With the aid of experimental data obtained from a two-blade arrangement, an empirical relation was introduced that permitted calculation of higher harmonics. The generality of the final relation given is indicated by the fundamental and second harmonic of a four-blade arrangement

    Noise from Two-Blade Propellers

    Get PDF
    The two-blade propeller, one of the most powerful sources of sound known, has been studied with the view of obtaining fundamental information concerning the noise emission. In order to eliminate engine noise, the propeller was mounted on an electric motor. A microphone was used to pick up the sound whose characteristics were studied electrically. The distribution of noise throughout the frequency range, as well as the spatial distribution about the propeller, was studied. The results are given in the form of polar diagrams. An appendix of common acoustical terms is included

    A Search for a Sub-Earth Sized Companion to GJ 436 and a Novel Method to Calibrate Warm Spitzer IRAC Observations

    Get PDF
    We discovered evidence for a possible additional 0.75 R_Earth transiting planet in the NASA EPOXI observations of the known M dwarf exoplanetary system GJ 436. Based on an ephemeris determined from the EPOXI data, we predicted a transit event in an extant Spitzer Space Telescope 8 micron data set of this star. Our subsequent analysis of those Spitzer data confirmed the signal of the predicted depth and at the predicted time, but we found that the transit depth was dependent on the aperture used to perform the photometry. Based on these suggestive findings, we gathered new Warm Spitzer Observations of GJ 436 at 4.5 microns spanning a time of transit predicted from the EPOXI and Spitzer 8 micron candidate events. The 4.5 micron data permit us to rule out a transit at high confidence, and we conclude that the earlier candidate transit signals resulted from correlated noise in the EPOXI and Spitzer 8 micron observations. In the course of this investigation, we developed a novel method for correcting the intrapixel sensitivity variations of the 3.6 and 4.5 micron channels of the Infrared Array Camera (IRAC) instrument. We demonstrate the sensitivity of Warm Spitzer observations of M dwarfs to confirm sub-Earth sized planets. Our analysis will inform similar work that will be undertaken to use Warm Spitzer observations to confirm rocky planets discovered by the Kepler mission.Comment: 22 pages, 8 figures, accepted for publication in PAS

    Rayleigh scattering in the transit spectrum of HD 189733b

    Get PDF
    The transit spectrum of the exoplanet HD 189733b has recently been obtained between 0.55 and 1.05 microns. Here we present an analysis of this spectrum. We develop first-order equations to interpret absorption spectra. In the case of HD 189733b, we show that the observed slope of the absorption as a function of wavelength is characteristic of extinction proportional to the inverse of the fourth power of the wavelength (lambda^-4). Assuming an extinction dominated by Rayleigh scattering, we derive an atmospheric temperature of 1340+/-150 K. If molecular hydrogen is responsible for the Rayleigh scattering, the atmospheric pressure at the planetary characteristic radius of 0.1564 stellar radius must be 410+/-30 mbar. However the preferred scenario is scattering by condensate particles. Using the Mie approximation, we find that the particles must have a low value for the imaginary part of the refraction index. We identify MgSiO3 as a possible abundant condensate whose particle size must be between 0.01 and 0.1 microns. For this condensate, assuming solar abundance, the pressure at 0.1564 stellar radius is found to be between a few microbars and few millibars, and the temperature is found to be in the range 1340-1540 K, and both depend on the particle size.Comment: Accepted for publication in A&A Lette

    Ground- and Space-based Detection of the Thermal Emission Spectrum of the Transiting Hot Jupiter KELT-2Ab

    Get PDF
    We describe the detection of water vapor in the atmosphere of the transiting hot Jupiter KELT-2Ab by treating the star-planet system as a spectroscopic binary with high-resolution, ground-based spectroscopy. We resolve the signal of the planet's motion with deep combined flux observations of the star and the planet. In total, six epochs of Keck NIRSPEC LL-band observations were obtained, and the full data set was subjected to a cross correlation analysis with a grid of self-consistent atmospheric models. We measure a radial projection of the Keplerian velocity, KPK_P, of 148 ±\pm 7 km s−1^{-1}, consistent with transit measurements, and detect water vapor at 3.8σ\sigma. We combine NIRSPEC LL-band data with SpitzerSpitzer IRAC secondary eclipse data to further probe the metallicity and carbon-to-oxygen ratio of KELT-2Ab's atmosphere. While the NIRSPEC analysis provides few extra constraints on the SpitzerSpitzer data, it does provide roughly the same constraints on metallicity and carbon-to-oxygen ratio. This bodes well for future investigations of the atmospheres of non-transiting hot Jupiters.Comment: accepted to A

    Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b

    Get PDF
    The nearby extrasolar planet GJ 436b--which has been labelled as a 'hot Neptune'--reveals itself by the dimming of light as it crosses in front of and behind its parent star as seen from Earth. Respectively known as the primary transit and secondary eclipse, the former constrains the planet's radius and mass, and the latter constrains the planet's temperature and, with measurements at multiple wavelengths, its atmospheric composition. Previous work using transmission spectroscopy failed to detect the 1.4-\mu m water vapour band, leaving the planet's atmospheric composition poorly constrained. Here we report the detection of planetary thermal emission from the dayside of GJ 436b at multiple infrared wavelengths during the secondary eclipse. The best-fit compositional models contain a high CO abundance and a substantial methane (CH4) deficiency relative to thermochemical equilibrium models for the predicted hydrogen-dominated atmosphere. Moreover, we report the presence of some H2O and traces of CO2. Because CH4 is expected to be the dominant carbon-bearing species, disequilibrium processes such as vertical mixing and polymerization of methane into substances such as ethylene may be required to explain the hot Neptune's small CH4-to-CO ratio, which is at least 10^5 times smaller than predicted

    SYMPA, a dedicated instrument for Jovian Seismology. II. Real performance and first results

    Full text link
    Context. Due to its great mass and its rapid formation, Jupiter has played a crucial role in shaping the Solar System. The knowledge of its internal structure would strongly constrain the solar system formation mechanism. Seismology is the most efficient way to probe directly the internal structure of giant planets. Aims. SYMPA is the first instrument dedicated to the observations of free oscillations of Jupiter. Principles and theoretical performance have been presented in paper I. This second paper describes the data processing method, the real instrumental performance and presents the first results of a Jovian observation run, lead in 2005 at Teide Observatory. Methods. SYMPA is a Fourier transform spectrometer which works at fixed optical path difference. It produces Doppler shift maps of the observed object. Velocity amplitude of Jupiter's oscillations is expected below 60 cm/s. Results Despite light technical defects, the instrument demonstrated to work correctly, being limited only by photon noise, after a careful analysis. A noise level of about 12 cm/s has been reached on a 10-night observation run, with 21 % duty cycle, which is 5 time better than previous similar observations. However, no signal from Jupiter is clearly highlighted.Comment: 13 pages, 26 figure
    • …
    corecore