70 research outputs found

    The Composition of Titan's Lower Atmosphere and Simple Surface Volatiles as Measured by the Cassini-Huygens Probe Gas Chromatograph Mass Spectrometer Experiment

    Get PDF
    The Cassini-Huygens Probe Gas Chromatograph Mass Spectrometer (GCMS) determined the composition of the Titan atmosphere from ~140km altitude to the surface. After landing, it returned composition data of gases evaporated from the surface. Height profiles of molecular nitrogen (N2), methane (CH4) and molecular hydrogen (H2) were determined. Traces were detected on the surface of evaporating methane, ethane (C2H6), acetylene (C2H2), cyanogen (C2N2) and carbon dioxide (CO2). The methane data showed evidence that methane precipitation occurred recently. The methane mole fraction was (1.48+/-0.09) x 10(exp -2) in the lower stratosphere (139.8 km to 75.5 km) and (5.65+/-0.18) x 10(exp -2) near the surface (6.7 km to the surface). The molecular hydrogen mole fraction was (1.01+/-0.16) x 10(exp -3) in the atmosphere and (9.90+/-0.17) x 10(exp -4) on the surface. Isotope ratios were 167.7+/-0.6 for N-14/N-15 in molecular nitrogen, 91.1+/-1.4 for C-12/C-13 in methane and (1.35+/-0.30) x 10(exp -4) for D/H in molecular hydrogen. The mole fractions of Ar-36 and radiogenic Ar-40 are (2.1+/-0.8) x 10(exp -7) and (3.39 +/-0.12) x 10(exp -5) respectively. Ne-22 has been tentatively identified at a mole fraction of (2.8+/-2.1) x 10(exp -7) Krypton and xenon were below the detection threshold of 1 x 10(exp -8) mole fraction. Science data were not retrieved from the gas chromatograph subsystem as the abundance of the organic trace gases in the atmosphere and on the ground did not reach the detection threshold. Results previously published from the GCMS experiment are superseded by this publication

    The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe

    Full text link
    Saturn's largest moon, Titan, remains an enigma, explored only by remote sensing from Earth, and by the Voyager and Cassini spacecraft. The most puzzling aspects include the origin of the molecular nitrogen and methane in its atmosphere, and the mechanism(s) by which methane is maintained in the face of rapid destruction by photolysis. The Huygens probe, launched from the Cassini spacecraft, has made the first direct observations of the satellite's surface and lower atmosphere. Here we report direct atmospheric measurements from the Gas Chromatograph Mass Spectrometer (GCMS), including altitude profiles of the constituents, isotopic ratios and trace species ( including organic compounds). The primary constituents were confirmed to be nitrogen and methane. Noble gases other than argon were not detected. The argon includes primordial Ar-36, and the radiogenic isotope Ar-40, providing an important constraint on the outgassing history of Titan. Trace organic species, including cyanogen and ethane, were found in surface measurements.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62703/1/nature04122.pd

    Consensus standards of healthcare for adults and children with inflammatory bowel disease in the UK

    Get PDF
    Objective Symptoms and clinical course during inflammatory bowel disease (IBD) vary among individuals. Personalised care is therefore essential to effective management, delivered by a strong patient-centred multidisciplinary team, working within a well-designed service. This study aimed to fully rewrite the UK Standards for the healthcare of adults and children with IBD, and to develop an IBD Service Benchmarking Tool to support current and future personalised care models. Design Led by IBD UK, a national multidisciplinary alliance of patients and nominated representatives from all major stakeholders in IBD care, Standards requirements were defined by survey data collated from 689 patients and 151 healthcare professionals. Standards were drafted and refined over three rounds of modified electronic-Delphi. Results Consensus was achieved for 59 Standards covering seven clinical domains; (1) design and delivery of the multidisciplinary IBD service; (2) prediagnostic referral pathways, protocols and timeframes; (3) holistic care of the newly diagnosed patient; (4) flare management to support patient empowerment, self-management and access to specialists where required; (5) surgery including appropriate expertise, preoperative information, psychological support and postoperative care; (6) inpatient medical care delivery (7) and ongoing long-term care in the outpatient department and primary care setting including shared care. Using these patient-centred Standards and informed by the IBD Quality Improvement Project (IBDQIP), this paper presents a national benchmarking framework. Conclusions The Standards and Benchmarking Tool provide a framework for healthcare providers and patients to rate the quality of their service. This will recognise excellent care, and promote quality improvement, audit and service development in IBD

    HALP - an East/West technology transfer experience

    No full text
    HALP - Hungarian Academic Links ProgrammeAvailable from British Library Document Supply Centre-DSC:5381.63652(1995/5) / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Results from the Gas Chromatograph Mass Spectrometer (GCMS) Experiment on the Cassini-Huygens Probe

    No full text
    The Gas Chromatograph Mass Spectrometer was one of six instruments on the Cassini-Huygens Probe mission to Titan. The GCMS measured in situ the chemical composition of the atmosphere during the probe descent and served as the detector for the pyrolization products for the Aerosol Collector Pyrolyser (ACP) experiment to determine the composition of the aerosol particles. The GCMS collected data from an altitude of 146 km to ground impact. The Probe and the GCMS survived impact and collected data for 1 hour and 9 minutes on the surface. Mass spectra were collected during descent and on the ground over a range of m/z from 2 to 141. The major constituents of the lower atmosphere were confirmed to be N2 and CH4. The methane mole fraction was uniform in the stratosphere. It increased below the tropopause, at about 32 km altitude, monotonically toward the surface, reaching a plateau at about 8 km at a level near saturation. After surface impact a steep increase of the methane signal was observed, suggesting evaporation of surface condensed methane due to heating by the GCMS sample inlet heater. The measured mole fraction of Ar-40 is 4.3x10(exp -5) and of Ar-36 is 2.8x10(exp -7). The other primordial noble gases were below 10(exp -8) mole fraction. The isotope ratios of C-12/C-13 determined from methane measurements are 82.3 and of N-14/N-15 determined from molecular nitrogen are 183. The D/H isotope ratio determined from the H2 and HD measurements is 2.3x10(exp -4). Carbon dioxide, methane, acetylene and cyanogen were detected evaporating from the surface in addition to methane. The GCMS employed a quadrupole mass filter with a secondary electron multiplier detection system and a gas sampling system providing continuous direct atmospheric composition measurements and batch sampling through three gas chromatographic (GC) columns, a chemical scrubber and a hydrocarbon enrichment cell. The GCMS gas inlet was heated to prevent condensation, and to evaporate volatiles from the surface after impact
    corecore