103 research outputs found

    Automated experience-based learning for plug and produce assembly systems

    Get PDF
    YesThis paper presents a self-learning technique for adapting modular automated assembly systems. The technique consists of automatically analysing sensor data and acquiring experience on the changes made on an assembly system to cope with new production requirements or to recover from disruptions. Experience is generalised into operational knowledge that is used to aid engineers in future adaptations by guiding them throughout the process. At each step, applicable changes are presented and ranked based on: (1) similarity between the current context and those in the experience base; (2) estimate of the impact on system performance. The experience model and the self-learning technique reflect the modular structure of the assembly machine and are particularly suitable for plug and produce systems, which are designed to offer high levels of self-organisation and adaptability. Adaptations can be performed and evaluated at different levels: from the smallest pluggable unit to the whole assembly system. Knowledge on individual modules can be reused when modules are plugged into other systems. An experimental evaluation has been conducted on an industrial case study and the results show that, with experience-based learning, adaptations of plug and produce systems can be performed in a shorter time.European Union [grant number 314762]

    Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Cuscuta </it>L. (Convolvulaceae), commonly known as dodders, are epiphytic vines that invade the stems of their host with haustorial feeding structures at the points of contact. Although they lack expanded leaves, some species are noticeably chlorophyllous, especially as seedlings and in maturing fruits. Some species are reported as crop pests of worldwide distribution, whereas others are extremely rare and have local distributions and apparent niche specificity. A strong phylogenetic framework for this large genus is essential to understand the interesting ecological, morphological and molecular phenomena that occur within these parasites in an evolutionary context.</p> <p>Results</p> <p>Here we present a well-supported phylogeny of <it>Cuscuta </it>using sequences of the nuclear ribosomal internal transcribed spacer and plastid <it>rps2</it>, <it>rbcL </it>and <it>matK </it>from representatives across most of the taxonomic diversity of the genus. We use the phylogeny to interpret morphological and plastid genome evolution within the genus. At least three currently recognized taxonomic sections are not monophyletic and subgenus <it>Cuscuta </it>is unequivocally paraphyletic. Plastid genes are extremely variable with regards to evolutionary constraint, with <it>rbcL </it>exhibiting even higher levels of purifying selection in <it>Cuscuta </it>than photosynthetic relatives. Nuclear genome size is highly variable within <it>Cuscuta</it>, particularly within subgenus <it>Grammica</it>, and in some cases may indicate the existence of cryptic species in this large clade of morphologically similar species.</p> <p>Conclusion</p> <p>Some morphological characters traditionally used to define major taxonomic splits within <it>Cuscuta </it>are homoplastic and are of limited use in defining true evolutionary groups. Chloroplast genome evolution seems to have evolved in a punctuated fashion, with episodes of loss involving suites of genes or tRNAs followed by stabilization of gene content in major clades. Nearly all species of <it>Cuscuta </it>retain some photosynthetic ability, most likely for nutrient apportionment to their seeds, while complete loss of photosynthesis and possible loss of the entire chloroplast genome is limited to a single small clade of outcrossing species found primarily in western South America.</p

    Evolutionary dynamics of emblematic Araucaria species (Araucariaceae) in New Caledonia:Nuclear and chloroplast markers suggest recent diversification, introgression, and a tight link between genetics and geography within species

    Get PDF
    BACKGROUND: New Caledonia harbours a highly diverse and endemic flora, and 13 (out of the 19 worldwide) species of Araucaria are endemic to this territory. Their phylogenetic relationships remain largely unresolved. Using nuclear microsatellites and chloroplast DNA sequencing, we focused on five closely related Araucaria species to investigate among-species relationships and the distribution of within-species genetic diversity across New Caledonia. RESULTS: The species could be clearly distinguished here, except A. montana and A. laubenfelsii that were not differentiated and, at most, form a genetic cline. Given their apparent morphological and ecological similarity, we suggested that these two species may be considered as a single evolutionary unit. We observed cases of nuclear admixture and incongruence between nuclear and chloroplast data, probably explained by introgression and shared ancestral polymorphism. Ancient hybridization was evidenced between A. biramulata and A. laubenfelsii in Mt Do, and is strongly suspected between A. biramulata and A. rulei in Mt Tonta. In both cases, extensive asymmetrical backcrossing eliminated the influence of one parent in the nuclear DNA composition. Shared ancestral polymorphism was also observed for cpDNA, suggesting that species diverged recently, have large effective sizes and/or that cpDNA experienced slow rates of molecular evolution. Within-species genetic structure was pronounced, probably because of low gene flow and significant inbreeding, and appeared clearly influenced by geography. This may be due to survival in distinct refugia during Quaternary climatic oscillations. CONCLUSIONS: The study species probably diverged recently and/or are characterized by a slow rate of cpDNA sequence evolution, and introgression is strongly suspected. Within-species genetic structure is tightly linked with geography. We underline the conservation implications of our results, and highlight several perspectives. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-014-0171-6) contains supplementary material, which is available to authorized users

    Toward an Anthropocentric Approach for Hybrid Control Architectures: Case of a Furniture Factory

    No full text
    International audienceTypology of goods and services' consumption has changed. In order to adapt to this change, it is relevant for a company to turn toward new ways of production and management. Slowly, the concept of industry 4.0 starts to set up in manufacturing companies. Research on hybrid control systems favours achieving automated and flexible production system through "jidoka" (or au-tonomation) and Just In Time principles. Still, studies stay mainly techno-centred rather than anthropocentric. Parisot company suffers today of a lack of reactivity to its market and of a production tool maladjusted to customer's consumption habits. This article aims to sum up the company's current situation, and to introduce the project that intends to back it through its economic, technological and sociological transition toward a flexible, adaptive and sustainable human-centred manufacturing system

    Leader‐follower fixed‐time consensus for multi‐agent systems with unknown non‐linear inherent dynamics

    No full text
    IF=2.048International audienceThis paper focuses on the design of fixed-time consensus for first order multi-agent systems with unknown inherent nonlinear dynamics. A distributed control protocol, based on local information, is proposed to ensure the convergence of the tracking errors in finite time. Some conditions are derived to select the controller gains in order to obtain a prescribed convergence time regardless of the initial conditions. Simulations are performed to validate the theoretical results
    corecore