81 research outputs found

    Moderate deviations for random field Curie-Weiss models

    Full text link
    The random field Curie-Weiss model is derived from the classical Curie-Weiss model by replacing the deterministic global magnetic field by random local magnetic fields. This opens up a new and interestingly rich phase structure. In this setting, we derive moderate deviations principles for the random total magnetization SnS_n, which is the partial sum of (dependent) spins. A typical result is that under appropriate assumptions on the distribution of the local external fields there exist a real number mm, a positive real number λ\lambda, and a positive integer kk such that (Sn−nm)/nα(S_n-nm)/n^{\alpha} satisfies a moderate deviations principle with speed n1−2k(1−α)n^{1-2k(1-\alpha)} and rate function λx2k/(2k)!\lambda x^{2k}/(2k)!, where 1−1/(2(2k−1))<α<11-1/(2(2k-1)) < \alpha < 1.Comment: 21 page

    Asymptotics of the mean-field Heisenberg model

    Full text link
    We consider the mean-field classical Heisenberg model and obtain detailed information about the total spin of the system by studying the model on a complete graph and sending the number of vertices to infinity. In particular, we obtain Cramer- and Sanov-type large deviations principles for the total spin and the empirical spin distribution and demonstrate a second-order phase transition in the Gibbs measures. We also study the asymptotics of the total spin throughout the phase transition using Stein's method, proving central limit theorems in the sub- and supercritical phases and a nonnormal limit theorem at the critical temperature.Comment: 44 page

    Stochastic Budget Optimization in Internet Advertising

    Full text link
    Internet advertising is a sophisticated game in which the many advertisers "play" to optimize their return on investment. There are many "targets" for the advertisements, and each "target" has a collection of games with a potentially different set of players involved. In this paper, we study the problem of how advertisers allocate their budget across these "targets". In particular, we focus on formulating their best response strategy as an optimization problem. Advertisers have a set of keywords ("targets") and some stochastic information about the future, namely a probability distribution over scenarios of cost vs click combinations. This summarizes the potential states of the world assuming that the strategies of other players are fixed. Then, the best response can be abstracted as stochastic budget optimization problems to figure out how to spread a given budget across these keywords to maximize the expected number of clicks. We present the first known non-trivial poly-logarithmic approximation for these problems as well as the first known hardness results of getting better than logarithmic approximation ratios in the various parameters involved. We also identify several special cases of these problems of practical interest, such as with fixed number of scenarios or with polynomial-sized parameters related to cost, which are solvable either in polynomial time or with improved approximation ratios. Stochastic budget optimization with scenarios has sophisticated technical structure. Our approximation and hardness results come from relating these problems to a special type of (0/1, bipartite) quadratic programs inherent in them. Our research answers some open problems raised by the authors in (Stochastic Models for Budget Optimization in Search-Based Advertising, Algorithmica, 58 (4), 1022-1044, 2010).Comment: FINAL versio

    On the dynamical behavior of the ABC model

    Full text link
    We consider the ABC dynamics, with equal density of the three species, on the discrete ring with NN sites. In this case, the process is reversible with respect to a Gibbs measure with a mean field interaction that undergoes a second order phase transition. We analyze the relaxation time of the dynamics and show that at high temperature it grows at most as N2N^2 while it grows at least as N3N^3 at low temperature

    Large Deviations for Random Trees

    Full text link
    We consider large random trees under Gibbs distributions and prove a Large Deviation Principle (LDP) for the distribution of degrees of vertices of the tree. The LDP rate function is given explicitly. An immediate consequence is a Law of Large Numbers for the distribution of vertex degrees in a large random tree. Our motivation for this study comes from the analysis of RNA secondary structures.Comment: 10 page

    Large Deviations for the Stochastic Shell Model of Turbulence

    Get PDF
    In this work we first prove the existence and uniqueness of a strong solution to stochastic GOY model of turbulence with a small multiplicative noise. Then using the weak convergence approach, Laplace principle for so- lutions of the stochastic GOY model is established in certain Polish space. Thus a Wentzell-Freidlin type large deviation principle is established utilizing certain results by Varadhan and Bryc.Comment: 21 pages, submitted for publicatio

    Preconditioning Newton-Krylov Methods in Non-Convex Large Scale Optimization

    Get PDF
    We consider an iterative preconditioning technique for non-convex large scale optimization. First, we refer to the solution of large scale indefinite linear systems by using a Krylov subspace method, and describe the iterative construction of a preconditioner which does not involve matrices products or matrices storage. The set of directions generated by the Krylov subspace method is used, as by product, to provide an approximate inverse preconditioner. Then, we experience our preconditioner within Truncated Newton schemes for large scale unconstrained optimization, where we generalize the truncation rule by Nash–Sofer (Oper. Res. Lett. 9:219–221, 1990) to the indefinite case, too. We use a Krylov subspace method to both approximately solve the Newton equation and to construct the preconditioner to be used at the current outer iteration. An extensive numerical experience shows that the proposed preconditioning strategy, compared with the unpreconditioned strategy and PREQN (Morales and Nocedal in SIAM J. Optim. 10:1079–1096, 2000), may lead to a reduction of the overall inner iterations. Finally, we show that our proposal has some similarities with the Limited Memory Preconditioners (Gratton et al. in SIAM J. Optim. 21:912–935, 2011)
    • …
    corecore