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Abstract We consider an iterative preconditioning technique for non-convex large
scale optimization. First, we refer to the solution of large scale indefinite linear sys-
tems by using a Krylov subspace method, and describe the iterative construction of
a preconditioner which does not involve matrices products or matrices storage. The
set of directions generated by the Krylov subspace method is used, as by product, to
provide an approximate inverse preconditioner. Then, we experience our precondi-
tioner within Truncated Newton schemes for large scale unconstrained optimization,
where we generalize the truncation rule by Nash–Sofer (Oper. Res. Lett. 9:219–221,
1990) to the indefinite case, too. We use a Krylov subspace method to both approxi-
mately solve the Newton equation and to construct the preconditioner to be used at the
current outer iteration. An extensive numerical experience shows that the proposed
preconditioning strategy, compared with the unpreconditioned strategy and PREQN
(Morales and Nocedal in SIAM J. Optim. 10:1079–1096, 2000), may lead to a re-
duction of the overall inner iterations. Finally, we show that our proposal has some
similarities with the Limited Memory Preconditioners (Gratton et al. in SIAM J. Op-
tim. 21:912–935, 2011).
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1 Introduction

In this paper we study a preconditioning strategy to be used for the efficient solution
of large scale linear systems. As well known, there are many and different contexts
of nonlinear optimization in which the iterative solution of sequences of linear sys-
tems is required. Some examples are Truncated Newton methods in unconstrained
optimization, equality and/or inequality constrained problems, KKT systems, inte-
rior point methods, PDE constrained optimization and many others.

Krylov subspace methods are usually used for iteratively solving large scale linear
systems, by means of “matrix-free” implementations. Examples of these methods are
the Conjugate Gradient (CG) for symmetric positive definite systems, the Lanczos
process (SYMMLQ and MINRES) for symmetric indefinite systems, GMRES, Bi-
CGSTAB, QMR methods for unsymmetric systems.

In this work we consider symmetric indefinite linear systems, and we focus on
preconditioners based on using Krylov subspace methods. In particular, our aim is
to iteratively construct a preconditioner by using a decomposition of the system ma-
trix (see, e.g. [10, 13, 27]), obtained as by product of the Krylov subspace method.
Firstly, we state the least requirements that a Krylov subspace method must satisfy to
be suited to this aim. Then, we define our preconditioner with reference to a general
Krylov subspace method and prove theoretical properties for such a preconditioner.
Finally, we focus on the CG method and the Krylov planar method FLR (see [7, 10]),
which is an extension of the CG method, in order to build our preconditioner. We
consider these algorithms since they both generate the conjugate directions we need;
moreover, algorithm FLR may also prevent from the pivot breakdowns of the CG
when the system matrix is not positive definite. Possible alternatives may be con-
sidered, suitably using the information provided by MINRES, in order to build our
preconditioner. Nevertheless, within optimization frameworks, since the CG is com-
putationally cheap, it is often used also in case of an indefinite system matrix, in place
of SYMMLQ or MINRES. In this case, whenever the CG even gets stuck, standard
procedures are usually adopted to recover the optimization iteration (see, e.g., [3, 4]
and the implementation details in [18]). Finally, consider that the optimization frame-
work where we embed our preconditioner aims at iteratively detecting minimizers of
the objective function. This implies that, as described in the next paragraphs, we are
going to solve eventually positive definite linear systems, where the CG is always
well-posed.

We apply the latter CG-based methods in order to generate an approximation of
the inverse of the system matrix; then, the latter is used for building a preconditioner.
We show that the construction of such a preconditioner is obtained by storing a few
vectors, without computing matrices products or matrices inverses. Actually, we as-
sume that the entries of the system matrix are not known and the only information of
the system matrix is gained by means of a routine, which provides the product of the
matrix times a vector. As well known, this routine is usually assumed available ‘for
free’, since it is required by any implementation of a Krylov subspace method.

We use our preconditioner within a nonlinear optimization framework, namely in
solving nonconvex large scale unconstrained problems. In particular, we focus on the
so called Newton–Krylov methods, also known as Truncated Newton methods (see
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[23] for a survey). The latter methods are extensions of the Newton method, in which
a Krylov subspace method is usually used for approximately computing the search
direction. We strongly remark that in this context, all we need in order to compute our
preconditioner is already available, as by product of the inner iterations performed for
computing the search direction.

Notwithstanding Truncated Newton methods have been widely studied and ex-
tensively tested, it is largely recognized (see, e.g. [25]) that two key aspects for the
overall efficiency of these methods can be still considered worthwhile to be inves-
tigated. The first one regards the definition and the use of a preconditioner which
enables to accelerate the convergence. In fact, preconditioning is still considered an
essential tool for achieving a good efficiency and robustness, especially in the large
scale setting. The second one concerns the way to tackle nonconvex problems and
hence to handle indefinite Newton’s equations.

In this paper we try to address both the latter aspects at once, in the large scale
setting. As regards the first issue, numerical results show that the use of our pre-
conditioner often leads to a reduction of the overall number of inner iterations, in
most of the test problems considered. As regards the possibility to handle noncon-
vex problems, unlike the CG, the planar method FRL can avoid pivot breakdowns in
the indefinite case. Moreover, drawing our inspiration from [17], in computing the
search direction using the preconditioned CG, we avoid the untimely termination of
the inner iterations when negative curvatures are detected.

The preconditioner detailed in this paper has also some similarities with the LM
Preconditioners, proposed in [16] by Gratton et al., as commented in the next section
(Remark 2.1).

Finally, in the optimization framework we adopt, we propose an extension of the
truncation rule by Nash–Sofer [24] to the indefinite case.

The paper is organized as follows: in Sect. 2, we consider the problem of con-
structing a preconditioner for an indefinite linear system, by using a general Krylov
subspace method. In Sects. 3 and 4, we introduce our preconditioned CG. In Sects. 5
and 6, we address the Truncated Newton methods for unconstrained optimization and
study our new preconditioned Truncated Newton method. Finally, in Sect. 7 we re-
port the results of an extensive numerical testing, on all the large scale unconstrained
test problems in CUTEr collection [15]. We show that the approach we propose in
this paper is reliable and often enables a significant reduction of the number of in-
ner iterations, in solving both convex and nonconvex problems. A section of possible
alternatives and a section of conclusions complete the paper.

As regards the notations, for a n × n real matrix M we denote with Λ(M) the
spectrum of M ; Ik is the identity matrix of order k and eh is the h-th unit vector. For
sake of clarity, if the context requires, we use 0m×n to denote a m × n null matrix.
Finally, ‖·‖ indicates the Euclidean norm and for the set B the quantity |B| represents
its cardinality.

2 Iterative matrix decomposition and the new preconditioner

In this section we consider the solution of a large symmetric linear system, by using
a Krylov subspace method. We describe the conditions which should be satisfied by
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256 G. Fasano, M. Roma

the Krylov subspace method, in order to iteratively obtaining a decomposition of the
system matrix, for constructing the preconditioner we propose. To this aim, consider
the indefinite linear system

Ax = b, (2.1)

where A ∈ R
n×n is symmetric and nonsingular, n is large and b ∈ R

n, and consider
any Krylov subspace method for the solution of such a system (see, e.g. [13]). The
Lanczos process (SYMMLQ and MINRES) and the CG method are among the most
popular. They are equivalent as long as the matrix A is positive definite, whereas the
CG, though cheaper, may not cope with the indefinite case.

Our aim is to focus on Krylov subspace methods, in order to iteratively construct a
preconditioner to be used in the solution of the system (2.1). The next Assumption 2.1
summarizes the requirements for the Krylov subspace methods we adopt. We suppose
to apply any iterative Krylov subspace method and we assume that a finite number of
steps, say h � n, is performed.

Assumption 2.1 Let us consider the linear system (2.1). At the step h ≥ 1 of the
Krylov method the matrices Rh ∈ R

n×h, Th ∈ R
h×h, Lh ∈ R

h×h and Bh ∈ R
h×h are

generated, such that

ARh = RhTh + ρh+1uh+1e
T
h , (2.2)

Th = LhBhL
T
h , (2.3)

where

Rh = (u1 · · ·uh), uT
i uj = 0, ‖ui‖ = 1, 1 ≤ i �= j ≤ h + 1,

Th is symmetric tridiagonal, irreducible and nonsingular,
Lh is lower triangular with a “simple pattern” for its entries,
Bh is a nonsingular block diagonal matrix, with 1 × 1 or 2 × 2 diagonal blocks.

On the basis of the latter assumption, we can now define our preconditioner and
show its properties. Let Z ∈ R

n×n be a symmetric nonsingular matrix such that Z =
WDWT , where W ∈ R

n×n is nonsingular and D ∈ R
n×n is block diagonal with a

“simple pattern”, namely block diagonal with 1 × 1 or 2 × 2 blocks. Then, we define

|Z| = W |D|WT

where |D| is positive definite block diagonal with 1 × 1 or 2 × 2 blocks. In particular,
whenever D is diagonal also |D| is diagonal, with diagonal entries corresponding to
the absolute value of the diagonal entries of D. When D includes a 2 × 2 diagonal
block, then the latter is decomposed using the eigenvalues–eigenvectors factorization,
replacing the two eigenvalues by the corresponding absolute values, see Sect. 2.2 of
[11]. Now we can introduce the following matrix

Mh = (
In − RhR

T
h

)+ Rh|Th|RT
h , (2.4)
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where Rh and Th satisfy relation (2.2) and |Th| = Lh|Bh|LT
h . Observe that (In −

RhR
T
h ) is a projector onto the subspace orthogonal to the range of the matrix Rh and

Rh|Th|RT
h w = 0 for any w orthogonal to the range of Rh.

Theorem 2.1 Consider any Krylov subspace method to solve (2.1); suppose it per-
forms h ≤ n iterations and that Assumption 2.1 holds. Then we have

(a) Mh is symmetric and nonsingular;
(b) the inverse M−1

h exists and is given by

M−1
h = (

In − RhR
T
h

)+ Rh|Th|−1RT
h . (2.5)

Moreover, if h = n, then M−1
n = Rn|Tn|−1RT

n = |A−1|;
(c) Mh is positive definite and its spectrum Λ(Mh) is given by

Λ(Mh) = Λ
(|Th|

)∪ Λ(In−h), h = 1, . . . , n − 1;

(d1) Λ(M−1
h A) ≡ Λ(AM−1

h ) and contains at least h − 2 eigenvalues in the set
{−1,+1}, h = 2, . . . , n − 1;

(d2) if A is positive definite, then Λ(M−1
h A) contains at least h−1 eigenvalues equal

to +1, h = 1, . . . , n − 1;
(e) if h = n, then Λ(Mn) = Λ(|Tn|) and Λ(M−1

n A) = Λ(AM−1
n ) ⊆ {−1,+1}.

Proof As regards (a), the symmetry trivially follows from the symmetry of Th. More-
over, the matrix Rn,h exists such that RT

n,hRn,h = In−h and the columns of the ma-
trix [Rh | Rn,h] are an orthogonal basis of R

n. Thus, for any v ∈ R
n we can write

v = Rhv1 + Rn,hv2, with v1 ∈ R
h and v2 ∈ R

n−h. Now, to prove Mh is invertible, we
show that Mhv = 0 implies v = 0. In fact,

Mhv = Rn,hv2 + Rh|Th|v1 = [Rh|Th| | Rn,h]
[
v1
v2

]
= 0,

if and only if (vT
1 vT

2 )T = 0, since from Assumption 2.1 the matrix |Th| is nonsingular.
As regards (b), recalling that RT

h Rh = Ih and |Th| is nonsingular from Assump-
tion 2.1, a direct computation yields the result.

As concerns item (c), since In − RhR
T
h = Rn,hR

T
n,h, we can write (2.4) as

Mh = [Rh | uh+1 | Rn,h+1]
⎡

⎣
|Th| 0

0 1
0

0 In−(h+1)

⎤

⎦

⎡

⎢⎢⎢
⎣

RT
h

uT
h+1

RT
n,h+1

⎤

⎥⎥⎥
⎦

, h = 1, . . . , n − 1

(2.6)

which gives the result, since Th is irreducible and thus |Th| is positive definite.
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Item (d1) may be proved by considering that we have Λ(M−1
h A) ≡ Λ(M

−1/2
h A ×

M
−1/2
h ) ≡ Λ(AM−1

h ). Moreover, by (2.6), we have

M
−1/2
h = [Rh | uh+1 | Rn,h+1]

⎡

⎣
|Th|−1/2 0

0 1
0

0 In−(h+1)

⎤

⎦

⎡

⎢⎢⎢
⎣

RT
h

uT
h+1

RT
n,h+1

⎤

⎥⎥⎥
⎦

,

and hence

M
−1/2
h AM

−1/2
h = [Rh | uh+1 | Rn,h+1]

⎡

⎣
|Th|−1/2 0

0 1
0

0 In−(h+1)

⎤

⎦

·

⎡

⎢⎢⎢⎢
⎣

Th ρh+1eh

ρh+1e
T
h uT

h+1Auh+1

0
uT

h+1ARn,h+1

0 RT
n,h+1Auh+1 RT

n,h+1ARn,h+1

⎤

⎥⎥⎥⎥
⎦

·
⎡

⎣
|Th|−1/2 0

0 1
0

0 In−(h+1)

⎤

⎦

⎡

⎢⎢⎢
⎣

RT
h

uT
h+1

RT
n,h+1

⎤

⎥⎥⎥
⎦

= [Rh | uh+1 | Rn,h+1]

⎡

⎢
⎢⎢
⎢
⎢
⎣

|Th|−1/2Th|Th|−1/2 ρh+1|Th|−1/2eh

ρh+1eT
h

|Th|−1/2 uT
h+1Auh+1

0
uT
h+1ARn,h+1

0 RT
n,h+1Auh+1 RT

n,h+1ARn,h+1

⎤

⎥
⎥⎥
⎥
⎥
⎦

⎡

⎢⎢
⎢
⎢
⎣

RT
h

uT
h+1

RT
n,h+1

⎤

⎥⎥
⎥
⎥
⎦
,

where we used the fact that, by (2.2), we have RT
h ARh = Th, RT

h Auh+1 = ρh+1eh

and

RT
h ARn,h+1 = (

RT
n,h+1ARh

)T = (
RT

n,h+1

(
RhTh + ρh+1uh+1e

T
h

))T = 0.

Now, any eigenvalue of M
−1/2
h AM

−1/2
h solves the characteristic equation

det

⎡

⎢⎢
⎢⎢
⎣

|Th|−1/2Th|Th|−1/2 − λIh ρh+1|Th|−1/2eh

ρh+1e
T
h |Th|−1/2 uT

h+1Auh+1 − λ

0h×[n−(h+1)]
uT

h+1ARn,h+1

0[n−(h+1)]×h RT
n,h+1Auh+1 RT

n,h+1ARn,h+1 − λIn−(h+1)

⎤

⎥⎥
⎥⎥
⎦

= 0.

(2.7)
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For sake of brevity, let us denote the latter equation by

det

[
Ā B̄

B̄T C̄

]

= 0 (2.8)

where Ā ∈ R
(h+1)×(h+1), B̄ ∈ R

(h+1)×[n−(h+1)] and C̄ ∈ R
[n−(h+1)]×[n−(h+1)]. Now,

to find the n real zeroes of (2.8) (i.e. the eigenvalues of the matrix), we distinguish
two cases: the case (1) in which we prove that at least (h − 2) eigenvalues are in the
set {−1,+1}, and the case (2) in which we prove that possibly, among the remaining
n − (h − 2) eigenvalues there might be further values in the set {−1,+1}.

The case (1) corresponds to assume C̄ in (2.8) non singular. By using Proposi-
tion 2.8.4 (or equivalently Fact 2.17.3) in [2], we have

det

[
Ā B̄

B̄T C̄

]

= det

[
Ā − B̄C̄−1B̄T 0

0 C̄

]
= det

[
Ā − B̄C̄−1B̄T

]
det[C̄].

The matrix Ā − B̄C̄−1B̄T is known as the Schur complement of C̄ in
[

Ā B̄

B̄T C̄

]
. Now,

note that it results

[
Ā − B̄C̄−1B̄T

] =
[[ |Th|−1/2Th|Th|−1/2 − λIh ρh+1|Th|−1/2eh

ρh+1e
T
h |Th|−1/2 uT

h+1Auh+1 − λ

]
−

[
0h×h 0h

0T
h ξ

]]

=
[ |Th|−1/2Th|Th|−1/2 − λIh ρh+1|Th|−1/2eh

ρh+1e
T
h |Th|−1/2 uT

h+1Auh+1 − λ − ξ

]
,

for some ξ ∈ R. Therefore, since λ is such that det(C̄) �= 0, λ is an eigenvalue of
M

−1/2
h AM

−1/2
h if and only if

det

[ |Th|−1/2Th|Th|−1/2 − λIh ρh+1|Th|−1/2eh

ρh+1e
T
h |Th|−1/2 uT

h+1Auh+1 − λ − ξ

]
= 0. (2.9)

As a consequence, if we denote

Gh+1 =
[ |Th|−1/2Th|Th|−1/2 ρh+1|Th|−1/2eh

ρh+1e
T
h |Th|−1/2 uT

h+1Auh+1 − ξ

]
∈ R

(h+1)×(h+1)

and we order the eigenvalues of Gh+1 as

λh+1(Gh+1) ≤ λh(Gh+1) ≤ · · · ≤ λ1(Gh+1),

by the Cauchy interlacing Theorem (see e.g. [2] Lemma 8.4.4), it results

λi+1(Gh+1) ≤ λi

(|Th|−1/2Th|Th|−1/2) ≤ λi(Gh+1), i = 1, . . . , h,

that is

λh+1(Gh+1) ≤ λh

(|Th|−1/2Th|Th|−1/2) ≤ λh(Gh+1) ≤ λh−1
(|Th|−1/2Th|Th|−1/2)

≤ · · · ≤ λ2(Gh+1) ≤ λ1
(|Th|−1/2Th|Th|−1/2) ≤ λ1(Gh+1), (2.10)
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where

λh

(|Th|−1/2Th|Th|−1/2) ≤ λh−1
(|Th|−1/2Th|Th|−1/2) ≤ · · · ≤ λ1

(|Th|−1/2Th|Th|−1/2)

are the ordered eigenvalues of |Th|−1/2Th|Th|−1/2.
Now, consider that Λ(|Th|−1/2Th|Th|−1/2) ≡ Λ(|Th|−1Th) and |Th|−1Th =

L−T
h |Bh|−1L−1

h LhBhL
T
h = L−T

h ÎhL
T
h , where Îh is block diagonal with eigenvalues

σi , i = 1, . . . , h and σi ∈ {−1,+1}. Thus, if (μ, v) is an eigenpair of |Th|−1Th, then
Îh(L

T
h v) = μ(LT

h v), so that μ is an eigenvalue of Îh, i.e. μ ∈ {−1,1}.
Therefore, if the matrix Îh has σ+ eigenvalues equal to +1 and σ− eigenvalues

equal to −1 (with h = σ+ + σ−), it immediately follows by (2.10) that the matrix
Gh+1 has (σ− − 1) eigenvalues equal to −1, (σ+ − 1) eigenvalues equal to +1 and
one eigenvalue in the interval [−1,1]. This proves by (2.9) that at least (σ+ − 1) +
(σ− − 1) = h − 2 eigenvalues of M

−1/2
h AM

−1/2
h are in the set {−1,+1}.

The case (2) corresponds to assume C̄ in (2.8) singular. In this case, we give some
information about the remaining n − (h − 2) eigenvalues of the matrix in (2.8). On
this purpose we distinguish two subcases: (2a) λ is such that C̄ is singular and Ā is
nonsingular, (2b) λ is such that C̄ is singular and Ā is singular too. In case (2a) it
means that λ is not an eigenvalue of

[ |Th|−1/2Th|Th|−1/2 ρh+1|Th|−1/2eh

ρh+1e
T
h |Th|−1/2 uT

h+1Auh+1

]
,

so that, since Λ(|Th|−1/2Th|Th|−1/2) ⊆ {−1,+1}, by the Cauchy interlacing Theo-
rem, λ is possibly not in the set {−1,+1}. Thus, in this subcase λ is possibly among
the n − (h − 2) zeroes of (2.8) which are not in the set {−1,+1}.

On the other hand, in case (2b), observe preliminarily that uT
h+1ARn,h+1 ∈

R
1×[n−(h+1)] and by (2.2) we obtain (for some th+1,h+1 ∈ R)

A(Rh | uh+1) = (Rh | uh+1)

(
Th ρh+1eh

ρh+1e
T
h th+1,h+1

)
+ ρh+2uh+2e

T
h+1,

so that uT
h+1ARn,h+1 = (ρh+2 0 · · · 0) in (2.7). Now, computing the determinant in

(2.7) with respect to the elements of the (h+ 1)-th row, we obtain that it is the sum of
h + 2 terms. Considering that det(RT

n,h+1ARn,h+1 − λIn−(h+1)) = det(C̄) = 0, after
a few computation the determinant in (2.7) reduces to ( ‘*’ indicates ‘non relevant’
entries)

(−1)2h+3ρh+2 det

⎡

⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

|Th|−1/2Th|Th|−1/2 − λIh ρh+1|Th|−1/2eh

0 · · · · · · · · · · · · · · · · · ·0 ρh+2

0h×[n−(h+2)]

∗ · · · · · · · · · · · · · · · · ∗

0[n−(h+2)]×(h+1)

(∗ − λ) ∗ · · · ∗
∗ . . .

.

.

.

.

.

.
. . . ∗

∗ · · · ∗ (∗ − λ)

⎤

⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

+ (−1)2(h+1)
(
uT
h+1Auh+1 − λ

)
det

[
|Th|−1/2Th|Th|−1/2 − λIh 0h×[n−(h+1)]

0[n−(h+1)]×h RT
n,h+1ARn,h+1 − λIn−(h+1)

]

.
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Recalling that |Th|−1/2Th|Th|−1/2 has σ+ eigenvalues equal to +1 and σ− eigenval-
ues equal to −1 (with h = σ+ + σ−), the submatrix

⎛

⎝
|Th|−1/2Th|Th|−1/2 − λIh ρh+1|Th|−1/2eh

0 · · · · · · · · · · · · · · · · · ·0 ρh+2

⎞

⎠

in the previous expression has a determinant with at least h zeroes (values of λ) in
the set {−1,+1}. Thus, in the case (2b) at least h eigenvalues of the matrix in (2.8)
are in the set {−1,+1}. In the end, considering the cases (1), (2a) and (2b), among
the n zeroes of (2.8) at least h− 2 are in the set {−1,+1}, which completes the proof
of (d1).

Item (d2) follows reasoning as in item (d1) and considering that
Λ(|Th|−1/2Th|Th|−1/2) ⊆ {+1}.

Item (e) immediately follows from (2.2), (2.4) and the fact that Rn is orthogonal. �

Observe that the matrix M−1
h aims to provide an approximation of the inverse of

the matrix A. In particular, whenever A is positive definite and the iterative process
performs h = n iterations (see item (b)), then M−1

n = A−1.
We want to adopt the matrix M−1

h , with h � n, as preconditioner, as we will de-
scribe in the sequel. We observe that M−1

h is therefore a by product of the Krylov
subspace method. Note that this is not the first attempt in the literature to use a pre-
conditioner of this form. In fact, a similar approach has been considered also in the
context of GMRES methods via the Arnoldi process (see [1, 6, 19]). However, our
result is more general with respect to the result reported in [1], where it is required
that the columns of the matrix Rh span an invariant subspace of A.

Remark 2.1 It is worth to highlight that in case ρk+1uh+1 = 0 in (2.2) and Tk is posi-
tive definite (A positive definite implies that Tk is positive definite, but the converse is
not necessarily true), then our preconditioner (2.5) coincides with a Limited Memory
Preconditioner (LMP) [16, 28]. However, our proposal can cope with the indefinite
case, too. Moreover, whenever ρk+1uh+1 �= 0 then the two preconditioners do not
coincide and represent different preconditioning strategies.

Furthermore, since the columns of Rh are orthonormal, they can be seen as ap-
proximate eigenvectors of the matrix A, so that the theory developed in [12, 16] may
be suitably applied.

3 Computing a new preconditioner via the Conjugate Gradient algorithm

As remarked at the end of the previous section, the approach of the papers [1, 6, 19]
to compute a preconditioner is based on the use of the Arnoldi process, to generate a
basis of orthogonal vectors. In case of symmetric matrix A, the latter approach yields
the use of the Lanczos process. Here, the basis of orthogonal vectors is given by the
(normalized) Lanczos vectors Qh = (q1, . . . , qh) and the iterative process yields the
relation

AQh = QhTh + δhqhe
T
h , (3.1)
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where Th is a tridiagonal and nonsingular matrix and δh ∈ R (see, e.g. [27]). The
formula (3.1) similarly to (2.2) leads to the expression (see (2.4))

M̃h = (
In − QhQ

T
h

)+ QhThQ
T
h , (3.2)

whose inverse can be used as a possible preconditioner. Note that in case the sym-
metric matrix A is not positive definite, M̃−1

h could be indefinite, so that it cannot be
directly used as a preconditioner with some Krylov subspace methods (e.g. the CG
algorithm and the Lanczos process).

By using the well know relations between the Lanczos process and the CG method
(see, e.g. [27]), and considering the motivations in Sect. 1, we propose instead to
adopt the CG method in order to iteratively build a preconditioning matrix of the
form (2.4), which is also positive definite and such that M−1

h is easily computed. For
the sake of clarity we report a scheme of the CG algorithm.

Algorithm CG

Step 1: Set k = 1; d1 = 0; r1 = b.
If a stopping rule is satisfied then STOP, else compute p1 = r1.

Step k: Set dk+1 = dk + akpk , rk+1 = rk − akApk, where ak = ‖rk‖2

pT
k Apk

.

If a stopping rule is satisfied then STOP else compute pk+1 = rk+1 +
βkpk, where βk = ‖rk+1‖2

‖rk‖2
.

Set k = k + 1 and go to Step k.

After h ≤ n steps of the Algorithm CG the following matrices can be defined (see
also [27]):

Rh =
(

r1

‖r1‖ · · · rh

‖rh‖
)

∈ R
n×h, Ph =

(
p1

‖r1‖ · · · ph

‖rh‖
)

∈ R
n×h,

and the following relations hold

RT
h Rh = Ih (3.3)

ARh = RhTh + ρh+1rh+1e
T
h , for some ρh+1 �= 0, (3.4)

where Th is tridiagonal and is given by

Th = LhDhL
T
h , (3.5)
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with

Lh =

⎛

⎜⎜⎜⎜
⎜⎜
⎝

1
−√

β1 1

−√
β2

. . .

. . .
. . .

−√
βh−1 1

⎞

⎟⎟⎟⎟
⎟⎟
⎠

(3.6)

and

Dh = diag

{
1

a1
,

1

a2
, . . . ,

1

ah

}
.

If ri �= 0, i = 1, . . . , h and rh+1 = 0 then dh+1 solves (2.1), i.e. Adh+1 = b so that no
preconditioner is needed to be built. Otherwise, whenever rh+1 �= 0 then (3.4) holds
and from (3.3) we have

RT
h ARh = Th. (3.7)

Moreover, since A is nonsingular, Th is nonsingular too, and irreducible. In addition
we have

PhL
T
h = Rh. (3.8)

Therefore, by means of the Algorithm CG the matrices Rh, Th, Lh and Bh satisfying
Assumption 2.1 can be iteratively constructed. Therefore, the preconditioner M−1

h

obtained by using expressions (3.8) and (3.5) in (2.5) can be rewritten as

M−1
h = (

In − PhL
T
h LhP

T
h

)+ PhL
T
h |Th|−1LhP

T
h (3.9)

= (
In − PhL

T
h LhP

T
h

)+ Ph|Dh|−1P T
h , (3.10)

where

|Th| = Lh|Dh|LT
h and |Dh| = diag

{
1

|a1| ,
1

|a2| , . . . ,
1

|ah|
}
.

It is fundamental to notice that the construction of the preconditioner by the Algo-
rithm CG does not require any matrix inversion (apart from |Dh|−1 which is a diag-
onal matrix). In particular, the storage of the matrices Ph (in place of the matrix Rh)
and Lh suffices to compute the preconditioner M−1

h . Finally, observe that though Ph

must be fully stored, however Lh is sparse and has a very simple structure. In the
context of preconditioning indefinite systems, the use of the absolute values of the
entries of Dh in order to handle indefiniteness has been already proposed in [11].

4 Computational cost of preconditioning

In this section we analyze the overall computational cost of introducing our precondi-
tioner in the Algorithm CG. For the sake of completeness we now report the scheme
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of Prec-CG(M), which is a standard preconditioned CG scheme, using M as precon-
ditioning matrix.

Algorithm Prec-CG(M)

Step 1: Set k = 1; d1 = 0; r1 = b; M−1 ∈ R
n×n; z1 = M−1r1.

If a stopping rule is satisfied then STOP, else compute p1 = z1.

Step k: Set dk+1 = dk + ãkpk , rk+1 = rk − ãkApk , where ãk = rT
k zk

pT
k Apk

.

If a stopping rule is satisfied then STOP
else compute zk+1 = M−1rk+1, pk+1 = zk+1 + β̃kpk ,

where β̃k = rT
k+1zk+1

rT
k zk

.

Set k = k + 1 and go to Step k.

Observe that, as well known, none of the coefficients in Algorithm Prec-CG(M)

depends explicitly on the preconditioner M−1, and the only effect of the precondi-
tioner is through the product M−1r , where r is an n-real vector.

Let us now consider the Algorithm Prec-CG(Mh), which uses the preconditioner
M−1

h defined in (2.5). We have in particular

M−1
h r = [(

In − RhR
T
h

)+ Rh|Th|−1RT
h

]
r = r + Rh

(|Th|−1 − In

)
RT

h r,

so that the overall computational cost C(M−1
h r) to compute the product M−1

h r is
given by

C
(
M−1

h r
) = hn + C

(|Th|−1)+ nh = 2hn + C
(|Th|−1) ≤ 2hn + O

(
h3), (4.1)

where C(|Th|−1) includes the computational cost of calculating |Th|−1 and the cost
to compute the product |Th|−1v, with v ∈ R

h. In addition, we can take advantage of
the structure of Th in (3.5), in order to estimate C(|Th|−1) in (4.1) more precisely.
Indeed, after a short computation, we can set

|Th|−1 = L−T
h |Dh|−1L−1

h

and L−1
h can be easily computed. In fact, we have the following result.

Proposition 4.1 Let Lh ∈ R
h×h in (3.6) be nonsingular, with the structure

Lh =
(

Lh−1 0
−√

βh−1e
T
h−1 1

)
,

where βh−1 > 0. Then we have

L−1
h =

(
Ih−1 0√

βh−1e
T
h−1 1

)(
L−1

h−1 0

0 1

)

, (4.2)
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and given the matrix L−1
h−1, the computation of L−1

h requires (h − 1) additional mul-
tiplications.

Proof By direct computation we obtain relation (4.2). Moreover, from (4.2) we see
that the product

√
βh−1e

T
h−1L

−1
h−1 requires just (h − 1) additional multiplications. �

From Proposition 4.1 we deduce that the overall cost C(|Th|−1) in (4.1) is given
by the sum of the following two costs:

• the cost to compute L−1
h , which is (from the iterative application of Proposi-

tion 4.1)

(h − 1) + (h − 2) + · · · + 1 = h

2
(h − 1),

• the cost to perform the computation |Th|−1v, with v ∈ R
h, which is

2
[
(h − 1) + (h − 2) + · · · + 1

]+ h = h2

(Observe that by Proposition 4.1 the matrix L−1
h is a lower triangular matrix and

not just a lower bidiagonal matrix).

Therefore, the overall computational cost C(M−1
h r) in (4.1) to perform the computa-

tion of M−1
h r is given by

C
(
M−1

h r
) = 2hn + C

(|Th|−1) = 2hn + 3

2
h

(
h − 1

3

)
, (4.3)

which is ≈ 2hn when h � n.
Note that the parameter h (in this paper) and the parameter m (in [21]) play the

same role: they define the ‘memory’ of the preconditioner, i.e. equivalently the num-
ber of vectors to be stored. So that, by using the same ‘memory’ (i.e. h = m), the
computational cost ≈ 2hn of our proposal is approximately one half of the computa-
tional cost 4mn of the proposal in [21].

5 Preconditioned Truncated Newton methods

In the previous sections we described how to iteratively construct the preconditioner
defined in (2.5). Even if this preconditioner can be exploited in different contexts in-
volving the solution of large scale linear systems, our main interest is to fruitfully use
it within the framework of Truncated Newton methods, for large scale optimization.
Of course, both unconstrained and constrained nonlinear optimization problems are
of interest. Here we investigate its use within unconstrained optimization, namely for
solving the problem

min
x∈Rn

f (x),
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where f : R
n → R is twice continuously differentiable and n is large. In particular,

we aim at defining some preconditioning strategies which lead to an improvement of
the overall efficiency of the method.

The structure of any (linesearch-based) Truncated Newton method for uncon-
strained optimization is well known (see e.g. [23]). It is based on two nested loops:
the iterations of the Newton method (outer iterations) and the iterations of the solvers
used, at each outer iteration j , to approximately solving the Newton system (inner
iterations)

Hj s = −gj , (5.1)

where Hj = ∇2f (xj ) and gj = ∇f (xj ). Then, a linesearch procedure is performed
along the approximate solution s(j) of (5.1). Thus, since a sequence of linear systems
must be solved, in many cases, it is crucial to have at one’s disposal a precondition-
ing strategy, which should enable a considerable computational saving in terms of
number of inner iterations. This motivates the fact that to define general purpose pre-
conditioning strategies, within Truncated Newton methods, is usually still considered
one the main issues which is worthwhile investigating, especially in dealing with
large scale problems. As well known, the main difficulty in this context relies on the
fact that, in the large scale setting, the Hessian matrix cannot be stored or handled.
Hence, any Truncated Newton implementation gains information on the Hessian ma-
trix by means of a routine, which provides the product of the Hessian matrix times
a vector. This prevents from using any preconditioner based on the knowledge of
the actual elements of the Hessian matrix. Unfortunately, few preconditioners have
been proposed so far, which do not require the full Hessian matrix. To our knowl-
edge, the first proposal of such a preconditioner is in [22]. Here a diagonal scaling
which uses a diagonal approximation of the Hessian obtained by means of BFGS
updating is introduced. Afterwards, in [20, 21] the automatic preconditioner PREQN
based on m-step limited memory quasi-Newton updating has been proposed, without
requiring the knowledge of the Hessian matrix. Noticeable is also the generalization
of the quasi-Newton approach proposed in [16], with the class of LM Precondition-
ers, whose construction involves only few vectors and their product with the matrix
to precondition. A preconditioning strategy based on a diagonal scaling, which only
gains the information of the Hessian matrix by means of the product of the Hessian
times a vector, has been proposed in [26]. The other preconditioners proposed, usu-
ally require the knowledge of the entries of the Hessian matrix and hence may not be
suited for large scale setting.

The preconditioner defined in Sect. 2, actually is generated during the iterations
of the iterative Krylov solver, gaining the information on the Hessian matrix as by
product. Moreover, as already noticed in Sect. 3, its application only requires to store
h real vectors, i.e. the columns of matrix Rh.

5.1 Our preconditioning strategy

Now we describe the preconditioning strategy we adopt, at each outer iteration, which
is applied in two sequential stages. In the first one we perform a very small number
of iterations of the Algorithm CG, to possibly construct the preconditioner. Then, in

Author's personal copy



Preconditioning Newton–Krylov methods in nonconvex large scale optimization 267

case a sufficient number of CG iterations (say h = hmax � n) are performed to build
the preconditioner, and the approximate solution dhmax is computed, we continue CG
iterations applying Prec-CG(Mhmax ) with d1 = 0. As we show in the proof of Propo-
sition 5.2 (see formula (A.1) in the Appendix), by setting d1 = 0 in Prec-CG(Mhmax )
the first preconditioned residual M−1

hmax
r1 does not need to be computed, since it is

directly obtained using the hmax directions given so far by the CG. In fact, it results

z1 = M−1
hmax

r1 =
hmax∑

i=1

|ai |pi

and the first direction of Prec-CG(Mhmax ) is p1 = z1. In this regard, the information
collected by the CG is completely retrieved when Prec-CG(Mhmax ) is started.

In case no preconditioner was built (h < hmax), we consider the current solution
obtained by the Algorithm CG. In the following scheme we summarize the latter
strategy.

1. Set the integer hmax (say hmax ≤ 15).
2. Perform the Algorithm CG. Terminate the CG after h iterations, computing

the approximate solution dh, if either a stopping criterion is satisfied or h =
hmax.
– If h = hmax store Ph, Lh, Dh and continue the CG iterations performing

the preconditioned Algorithm Prec-CG(Mhmax ) with d1 = 0.
– If h < hmax consider the current solution dh obtained by the Algorithm CG.

Observe that, if during the first h iterations of the Algorithm CG the termination
criterion is satisfied before performing hmax iterations, of course the inner iterations
are stopped and no preconditioner is considered.

Remark 5.1 As we will show in Proposition 5.2, this two stages strategy, in princi-
ple, does not imply a “waste of time”. Furthermore, note that the idea of rerunning
an iterative Krylov subspace method in order to retrieve information on the current
problem was already adopted in [14].

Remark 5.2 One of the most relevant point of such a strategy is the fact that, at the
j -th outer iteration (i.e. when we are solving the j -th system of the sequence (5.1)),
the preconditioner is computed on the basis of the current Hessian matrix Hj . On the
contrary, the strategies usually adopted (see, e.g. [21]) compute the preconditioner,
to be used in the j -th outer iteration, during the inner CG iterations performed at
the previous outer iteration. This means that the preconditioner is computed on the
basis of Hj−1, which could be a serious drawback in case the Hessian matrix should
drastically change from xj−1 to xj .

5.2 The stopping criterion to compute the search direction

In this section we describe how we compute the search direction s(j) which approx-
imately solves (5.1), at outer iteration j of the Truncated Newton method. We refer
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to the application of the Algorithm Prec-CG(Mh) to solve the Newton system (5.1),
assuming that the preconditioner M−1

h was already computed. We recall that we are
dealing with the indefinite case, so that particular safeguard is needed in computing
the search direction whenever a negative curvature direction is encountered, namely
a direction p such that pT Hjp < 0. In Sect. 6 we are going to give more details on the
indefinite case, by introducing another Krylov method that we can adopt alternatively
to the CG.

Here, getting our inspiration from [17], we adopt the following strategy: we do not
terminate the i-th CG inner iteration of either Algorithm CG or the Algorithm Prec-
CG(Mh), whenever a negative curvature direction is encountered, provided that

∣∣pT
i Hjpi

∣∣ > ε‖pi‖2,

where ε > 0 is a suitable parameter. Observe that, if pT
i Hjpi < 0 for some i, the

current approximate solution s(j), generated at the i-th CG iteration, could be no
longer a descent direction for the quadratic model

Qj(s) = 1

2
sT Hj s + gT

j s.

To overcome this drawback, which arises in dealing with nonconvex problems, we
proceed by suitably adapting the computation of the search direction. Hereafter, for
the sake of simplicity, when there is no ambiguity we omit the subscript j and use
Q(s) in place of Qj(s).

Let us now consider the k-th iteration of Prec-CG(Mh); let ε > 0 and define the
following index sets

I+
k = {

i ∈ {1, . . . , k} : pT
i Hjpi > ε‖pi‖2},

I−
k = {

i ∈ {1, . . . , k} : pT
i Hjpi < −ε‖pi‖2},

where |I+
k | + |I−

k | = k, and the following vectors

sP

k =
∑

i∈I+
k

ãipi =
∑

i∈I+
k

rT
i M−1

h ri

pT
i Hjpi

pi,

sN

k = −
∑

i∈I−
k

ãipi = −
∑

i∈I−
k

riM
−1
h ri

pT
i Hjpi

pi.

The direction sP

k can be viewed as the minimizer of Q(s) over the subspace
‘spani∈I+

k
{pi}’. Conversely sN

k is a negative curvature direction. Then, at each pre-

conditioned CG iteration we define the vector sk = sP

k + sN

k (see [17]). Observe that
the vector sk , in general, might not be an approximate solution of (5.1). However,
with the latter choice we guarantee the monotonic decrease of {Q(sk)} as k increases.
We remark that sP

k − sN

k , is possibly not a descent direction for Qj(s) when Hj is in-
definite. Hence, suitable strategies have been proposed in the literature to cope with
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the latter issue (see e.g. [3]). We adopt the approach in [17], since the direction sk has
several other appealing properties within optimization frameworks. The following
result holds.

Proposition 5.1 Suppose that the Algorithm Prec-CG(Mh) is applied for solving the
system (5.1). At each iteration k of Prec-CG(Mh) consider the following vector

sk = sP

k + sN

k . (5.2)

Then the sequence {Q(sk)}k=1,2,... is strictly decreasing, i.e.

Q(sk+1) < Q(sk), k = 1,2, . . . .

Proof By definition, we have

sk = sP

k + sN

k =
k∑

i=1

|ãi |pi = sk−1 + |ãk|pk.

Now, using the fact that r1 = −gj , rT
1 pk = rT

k M−1
h rk , pT

k Hjpi = 0, i ≤ k − 1, and
sk−1 = sk−2 + |ãk−1|pk−1 we obtain

Q(sk) = 1

2
[sk−1 + |ãk|pk]T Hj [sk−1 + |ãk|pk] + gT

j [sk−1 + |ãk|pk]

= 1

2

[
sT
k−1Hjsk−1 + ã2

kp
T
k Hjpk

]+ |ãk|pT
k Hj sk−1 + gT

j sk−1 + |ãk|gT
j pk

= 1

2

[
sT
k−1Hjsk−1 + ã2

kp
T
k Hjpk

]+ gT
j sk−1 + |ãk|gT

j pk

= Q(sk−1) + 1

2
sgn

(
pT

k Hjpk

) (rT
k M−1

h rk)
2

|pT
k Hjpk|

− rT
k M−1

h rk

|pT
k Hjpk|

rT
1 pk

= Q(sk−1) +
(

1

2
sgn

(
pT

k Hjpk

)− 1

)
(rT

k M−1
h rk)

2

|pT
k Hjpk|

< Q(sk−1). �

The position (5.2) and Proposition 5.1 play a fundamental rule for the choice of the
stopping criterion of Prec-CG(Mh), in the Truncated Newton scheme. In fact, from
Proposition 5.1 we can use the standard truncation rule based on the reduction of the
quadratic model [24]. Therefore, at the current outer iteration k, the CG iterations are
terminated if

Q(sk) − Q(sk−1)

Q(sk)/k
≤ α, (5.3)

where α is a suited parameter. We highlight that the stopping rule (5.3) was also
adopted in [21] to apply the preconditioner PREQN. Observe that setting Mh = I ,
i.e. in the unpreconditioned case, sk coincides with the choice of the Newton-type
direction in [17]. As well known in the literature of unconstrained optimization (see
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e.g. [23, 24]), though not immediately intuitive, the criterion (5.3) is equivalent to
the stopping criterion based on the relative residual, not requiring the combined use
of the two criteria. Note that Proposition 5.1, ensuring the monotonic decrease of
the quadratic model, enables to extend the use of the stopping criterion (5.3) to the
nonconvex case. Hence, the criterion (5.3) is used alternatively to the residual-based
standard criterion ‖rj‖/‖gj‖ ≤ ηj , where ηj → 0 as j → ∞.

5.3 Preconditioned Newton step

Now we aim at proving some properties which arise from applying the preconditioner
M−1

h as in (3.9)–(3.10). We recall that, according to Sect. 5.1, our strategy is based
on continuing the iterative process (after computing the preconditioner in the first
hmax unpreconditioned CG iterations) with the starting point d1 = 0. In the following
proposition we prove that, even if d1 = 0 in both Algorithm CG and Algorithm Prec-
CG(Mh) (i.e. a simple restart), one iteration of Algorithm Prec-CG(Mh) improves the
quadratic model of the function not less than h iterations of Algorithm CG. To this
aim, consider the vector

sPR

2 = s1 + |ã1|p1 = |ã1|M−1
h r1, (5.4)

obtained after one iteration of Algorithm Prec-CG(Mh).

Proposition 5.2 Let Mh be the matrix in (3.9)–(3.10), computed after h iterations
of the Algorithm CG. Let p1, . . . , ph be the conjugate directions generated, with
pT

� Hjpm = 0, 1 ≤ � �= m ≤ h, and p1 = −gj . Then we have

Q
(
sPR

2

) ≤ Q(sh), (5.5)

where sPR

2 is given in (5.4), and sh is defined in (5.2) with Mh = I .

Proof See the Appendix. �

This proposition clearly shows that, the use of our preconditioning strategy (see
Sect. 5.1) does not imply an additional effort to decrease the quadratic model. In fact,
in one iteration of the Algorithm Prec-CG(Mh) the quadratic model is improved not
less than the improvement obtained after h iterations of the Algorithm CG. Moreover,
using relation (A.1) we actually do not need to compute the first direction p1 in
Algorithm Prec-CG(Mh).

6 On computing the preconditioner in the indefinite case

In the previous sections we detailed how to build our preconditioner M−1
h after h

iterations of the Algorithm CG. We can easily extend our theory to the use of the
Conjugate Gradient-type method FLR introduced in [7]. Unlike the CG, it copes with
the indefinite case too, without the risk of pivot breakdown. It is an iterative method
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for solving indefinite linear systems, and is a modification of the standard CG algo-
rithm.

Further details on the Algorithm FLR can be found in [7–9]; here we simply con-
sider some relevant results, which can be used in order to obtain relations (2.2)–(2.3).

Unlike the Algorithm CG, if a pivot breakdown occurs at Step i (i.e. if
pT

i Api ≈ 0), the Algorithm FLR, similarly to the Lanczos process, does not stop
untimely.

In the remainder of this section we give evidence that the Algorithm FLR can also
provide the matrices Rh, Th, Lh and Bh in the Assumption 2.1, so that (2.2) and (2.3)
hold. To this aim we report the results in [10] and a few simple consequences.

Theorem 6.1 Consider the Algorithm FLR in [7] to solve the linear system Ax = b,
where A is symmetric, indefinite and nonsingular. Suppose the Algorithm FLR per-
forms h ≤ n steps. Then the following matrices can be defined: L̂h ∈ R

h×h a nonsin-
gular lower triangular matrix, B̂h ∈ R

h×h a 2 × 2 block diagonal matrix, R̂h ∈ R
n×h

whose columns are orthogonal, and T̂h ∈ R
h×h an irreducible symmetric tridiagonal

and nonsingular matrix. The following relations hold:

AR̂h = R̂hT̂h + ρ̂h+1ûh+1e
T
h , ρ̂h+1 ∈ R,

T̂h = L̂hB̂hL̂
T
h .

Moreover, the following matrix can be defined

M̂h = (
I − R̂hR̂

T
h

)+ R̂h|T̂h|R̂T
h , (6.1)

where |T̂h| = L̂h|B̂h|L̂T
h , and |B̂h| = diagi≤h{Vi |D̂i |V T

i }, D̂i is a 2 × 2 or 1 × 1
diagonal matrix and Vi is a 2 × 2 or 1 × 1 orthogonal matrix. The properties (a), (b),
(c), (d), (e) of Theorem 2.1, still hold replacing Mh, Rh, Th, Lh respectively with M̂h,
R̂h, T̂h, L̂h.

M̂h can be used as preconditioning matrix in the indefinite case, similarly to Mh.
It is fundamental to notice that, as for the Algorithm CG, the construction of the
preconditioner M̂−1

h by the Algorithm FLR does not require any matrix inversion
(apart from |B̂h|−1 which is a 2 × 2 block diagonal matrix). In fact, M̂−1

h can be

rewritten in the same form of (3.10), replacing |Dh|−1 with |B̂h|−1. Finally, observe
that L̂h is sparse and has a very simple structure (see [10]).

All the considerations we proved in obtaining the preconditioner by means of the
Algorithm CG, in the previous sections, still hold also in case Algorithm FLR is used.
For the sake of clarity and in order to preserve the simplicity of reading, we decided
to detail in the previous sections the theory by using the Algorithm CG and not the
Algorithm FLR.

7 Numerical results

In this section we report the results of a preliminary numerical investigation ob-
tained by embedding the new preconditioner in a linesearch based Truncated Newton
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method for unconstrained optimization. In particular, we performed a standard im-
plementation of a Truncated Newton method which uses the Algorithm CG as a tool
for constructing the preconditioner, and by adopting a standard monotone linesearch
procedure. The stopping criterion adopted for the CG inner iterations is (5.3) with the
standard choice α = 1/2 (see [24]). Then, the Algorithm Prec-CG is used as precon-
ditioned scheme to solve the Newton equation, according to the strategy described in
Sect. 5.1.

The aim of our numerical investigation is, firstly, to assess if the preconditioning
approach proposed is reliable. In particular, we adopt the same perspective of [21],
that is the key point is to check if the use of the preconditioner leads to a compu-
tational saving in terms of the overall number of inner iterations. Indeed, quoting
from [21], “Our main interest in these results lies in the number of CG iterations”.
This is due to the fact that each inner iteration requires a matrix–vector product of
the Hessian times a vector, which usually represents the main computational effort in
large scale setting. Nevertheless, we also report the CPU time needed to solve each
problem.

As test problems we used all the unconstrained large problems included in the
CUTEr collection [15]. Whenever a problem has variable dimension, we used the
problem with two different dimensions (usually 1000 and 10000 variables). As result
we have an overall test set of 112 problems. In performing a comparison among
different algorithms, we include all those problems where all the algorithms converge
to the same stationary point. Furthermore, on the guideline of [21], for each outer
iteration we allowed at most 2n inner iterations, where n is the dimension of the
problem.

All the algorithms were coded in FORTRAN 90 compiled with GFortran under
Linux UBUNTU 9.10, 64 bit. All the runs were performed on a PC Intel Core i7
870 at 2.93 GHz with 8 Gb RAM. Moreover, a failure was declared if the number of
function evaluations/inner iterations/outer iterations exceeded the value 100000, or
the CPU time exceeded 900 seconds.

As regards the parameter hmax, we experienced different values ranging from 5 to
15: the values hmax = 5 and hmax = 7 seem to provide a good trade-off between the
computational burden required to compute the preconditioner and its effectiveness.
The latter conclusion seems to match with the results in [21], where a satisfactory
approximation of the inverse Hessian matrix requires a similar number of vector pairs
as memory of the quasi-Newton update. We report here only the results obtained
with the value hmax = 7. For sake of completeness, we report the complete results of
our extensive numerical testing in terms of number of iterations (ITER), number of
function evaluations (FUNCT), number of CG-inner iterations (CG-it), CPU time in
seconds (TIME), along with the function value. In particular, in Tables 1 and 2 we
report the results obtained by using the Algorithm Prec-CG and in Tables 3 and 4 the
results obtained by using the (unpreconditioned) Algorithm CG.

Then, in order to perform a comparison with the use of preconditioner PREQN
introduced in [21], in Table 5 and Table 6 we report the complete results obtained by
using the preconditioner PREQN.

To our knowledge, PREQN is a well recognized approximate inverse precondi-
tioner for large scale problems, which is both iteratively built and is for a general
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Table 1 (Part I) Complete results relative to 112 test problems, using the Algorithm Prec-CG

Problem n Iter Funct CG-it F. value Time

ARWHEAD 1000 34 364 37 0.000000D+00 0.02

ARWHEAD 10000 10 102 11 1.332134D−11 0.05

BDQRTIC 1000 46 293 84 3.983818D+03 0.05

BDQRTIC 10000 121 1217 204 4.003431D+04 0.89

BROYDN7D 1000 458 1788 1676 3.823419D+00 0.85

BROYDN7D 10000 845 4138 3190 3.644797D+03 15.48

BRYBND 1000 20 64 26 6.709348D−12 0.02

BRYBND 10000 20 64 26 6.226697D−12 0.11

CHAINWOO 1000 166 335 554 1.000001D+00 0.18

CHAINWOO 10000 267 797 764 1.000001D+00 1.86

COSINE 1000 22 64 40 −9.990000D+02 0.03

COSINE 10000 19 65 32 −9.999000D+03 0.08

CRAGGLVY 1000 49 216 94 3.364231D+02 0.06

CRAGGLVY 10000 116 776 173 3.377956D+03 0.89

CURLY10 1000 11227 11514 37918 −1.003163D+05 14.35

CURLY10 10000 59999 61159 203494 −1.003163D+06 640.95

CURLY20 1000 13468 13650 45616 −1.001379D+05 22.71

CURLY20 10000 – – – – >900

CURLY30 1000 17007 17198 56998 −1.003163D+05 37.89

DIXMAANA 1500 8 13 9 1.000000D+00 0.01

DIXMAANA 3000 8 14 8 1.000000D+00 0.01

DIXMAANB 1500 5 10 6 1.000000D+00 0.01

DIXMAANB 3000 5 10 6 1.000000D+00 0.00

DIXMAANC 1500 5 11 6 1.000000D+00 0.01

DIXMAANC 3000 5 11 6 1.000000D+00 0.00

DIXMAAND 1500 5 8 5 1.000000D+00 0.01

DIXMAAND 3000 5 8 5 1.000000D+00 0.01

DIXMAANE 1500 76 79 168 1.000000D+00 0.09

DIXMAANE 3000 114 117 258 1.000000D+00 0.25

DIXMAANF 1500 52 57 136 1.000000D+00 0.09

DIXMAANF 3000 54 59 143 1.000000D+00 0.19

DIXMAANG 1500 43 86 121 1.000000D+00 0.09

DIXMAANG 3000 74 142 257 1.000000D+00 0.23

continued on next page
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Table 1 (Continued)

Problem n Iter Funct CG-it F. value Time

DIXMAANH 1500 54 56 134 1.000000D+00 0.11

DIXMAANH 3000 74 76 209 1.000000D+00 0.27

DIXMAANI 1500 215 218 693 1.000001D+00 0.39

DIXMAANI 3000 235 238 714 1.000003D+00 0.76

DIXMAANJ 1500 64 117 164 1.086254D+00 0.08

DIXMAANJ 3000 82 175 245 1.165166D+00 0.24

DIXMAANK 1500 60 74 173 1.000000D+00 0.15

DIXMAANK 3000 62 75 199 1.000000D+00 0.21

DIXMAANL 1500 53 55 130 1.000001D+00 0.09

DIXMAANL 3000 55 57 149 1.000000D+00 0.19

DQDRTIC 1000 33 274 34 7.461713D−26 0.03

DQDRTIC 10000 102 868 103 2.426640D−27 0.44

DQRTIC 1000 22 81 40 2.784985D−02 0.02

DQRTIC 10000 31 111 60 4.932478D−01 0.06

EDENSCH 1000 21 89 27 6.003285D+03 0.02

EDENSCH 10000 18 85 23 6.000328D+04 0.09

ENGVAL1 1000 11 34 16 1.108195D+03 0.01

ENGVAL1 10000 12 36 19 1.109926D+04 0.05

FLETCBV2 1000 1 1 0 −5.013384D−01 0.00

FLETCBV2 10000 1 1 0 −5.001341D−01 0.00

FLETCBV3 1000 9 9 22 −8.470408D+04 0.02

FLETCBV3 10000 112 112 136 −2.534893D+10 0.38

FLETCHCR 1000 52 344 87 6.453457D−07 0.04

unconstrained problem. It is based on limited memory quasi-Newton updating. In
particular, in [21] at the outer iteration j a new preconditioner Mj is generated, us-
ing the information available when solving the system Hj−1d = −gj−1, i.e. at the
(j − 1)-th outer iteration. In particular, m correction pairs of L-BFGS updating are
stored and used to define the new preconditioner.

In comparing the two preconditioning strategies, first observe that we are dealing
with large scale problems. Moreover, as long as hmax ≤ n1/3 (we adopted hmax ∈
[5,15] in our testing and hmax = 7 for the reported results) the cost for computing the
preconditioned residual M−1

h r by Prec-CG(Mh) is approximately given by ≈ 2hn

(see (4.3)), and it is significantly smaller than the corresponding computational cost in
applying the preconditioner proposed in [21]. In fact, the latter requires 4mn floating
point operations, where m plays the same role of h, for computing the preconditioned
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Table 2 (Part II) Complete results relative to 112 test problems, using the Algorithm Prec-CG

Problem n Iter Funct CG-it F. value Time

FLETCHCR 10000 117 1085 143 2.745120D−06 0.54

FMINSURF 1024 93 207 288 1.000000D+00 0.17

FMINSURF 5625 235 710 680 1.000000D+00 2.65

FREUROTH 1000 38 300 50 1.214697D+05 0.04

FREUROTH 10000 107 1052 119 1.216521D+06 0.63

GENHUMPS 1000 902 3559 3278 2.468237D−12 1.67

GENHUMPS 10000 393 1456 1223 6.205140D−13 5.68

GENROSE 1000 851 2601 2615 1.000000D+00 0.98

GENROSE 10000 8093 24306 24914 1.000000D+00 81.45

LIARWHD 1000 42 251 61 8.352643D−19 0.03

LIARWHD 10000 112 1107 133 1.455368D−20 0.55

MOREBV 1000 8 8 28 2.148161D−08 0.02

MOREBV 10000 2 2 7 2.428066D−09 0.01

MSQRTALS 1024 1346 1575 4682 3.616388D−04 23.73

MSQRTBLS 1024 1371 1608 4675 5.288396D−04 25.02

NONCVXUN 1000 796 1342 2740 2.331277D+03 1.37

NONCVXUN 10000 2692 12058 10957 2.333085D+04 42.24

NONCVXU2 1000 479 1247 1666 2.317124D+03 0.81

NONCVXU2 10000 2163 10064 8793 2.319231D+04 33.20

NONDIA 1000 22 256 27 6.680969D−21 0.04

NONDIA 10000 78 1515 82 5.507180D−13 0.64

NONDQUAR 1000 45 111 111 1.425631D−04 0.04

NONDQUAR 10000 46 175 98 3.744353D−04 0.18

PENALTY1 1000 31 32 59 9.686175D−03 0.02

PENALTY1 10000 54 81 121 9.900151D−02 0.20

POWELLSG 1000 46 257 86 1.992056D−08 0.05

POWELLSG 10000 114 783 151 7.735314D−08 0.25

POWER 1000 65 189 142 5.912729D−09 0.08

POWER 10000 233 891 559 9.025072D−09 1.08

QUARTC 1000 22 81 40 2.784985D−02 0.02

QUARTC 10000 31 111 60 4.932478D−01 0.07

SCHMVETT 1000 14 35 37 −2.994000D+03 0.03

SCHMVETT 10000 19 69 38 −2.999400D+04 0.20

continued on next page
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Table 2 (Continued)

Problem n Iter Funct CG-it F. value Time

SINQUAD 1000 37 310 49 −2.942505D+05 0.04

SINQUAD 10000 104 1517 111 −2.642315D+07 1.01

SPARSINE 1000 2860 3280 9616 9.042411D−03 7.81

SPARSINE 10000 – – – – >900

SPARSQUR 1000 22 66 34 6.266490D−09 0.02

SPARSQUR 10000 22 67 39 1.069594D−08 0.18

SPMSRTLS 1000 62 218 132 6.219291D+00 0.09

SPMSRTLS 10000 6181 6604 20578 5.713622D+01 119.40

SROSENBR 1000 35 309 40 2.842418D−22 0.02

SROSENBR 10000 104 920 108 9.421397D−12 0.24

TESTQUAD 1000 12401 12950 42766 1.636783D−05 12.76

TOINTGSS 1000 2 3 1 1.001002D+01 0.00

TOINTGSS 10000 2 3 1 1.000100D+01 0.00

TQUARTIC 1000 21 185 27 3.767509D−10 0.02

TQUARTIC 10000 14 144 18 1.145916D−11 0.05

TRIDIA 1000 244 635 738 7.979032D−06 0.27

TRIDIA 10000 1764 3391 5764 6.817977D−06 10.49

VARDIM 1000 37 37 72 1.058565D−20 0.03

VARDIM 10000 54 298 99 4.475275D−18 0.17

VAREIGVL 1000 24 49 74 2.351034D−08 0.04

VAREIGVL 10000 21 179 22 3.924839D−16 0.15

WOODS 1000 64 377 141 3.857513D−08 0.06

WOODS 10000 139 1095 223 5.031534D−08 0.51

residual at each inner iteration, and the parameter m is set by the user in the range
[4,16].

In separate figures we also include the results of these comparisons by using per-
formance profiles [5]. In particular, in Fig. 1 the Prec-CG and the (unpreconditioned)
CG algorithms are compared in terms of inner iterations.

Fig. 2 reports the comparison (in terms of inner iterations) among the Prec-CG,
the PREQN and the (unpreconditioned) CG algorithms. In order to carry on a fair
comparison, in this latter figure we include only those test problems where negative
curvature directions are not detected. This is due to the fact that in a standard use of
PREQN, a termination of the CG iterations is expected whenever a negative curvature
is encountered (see Sect. 3 of [21]).
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Table 3 (Part I) Complete results relative to 112 test problems, using the Algorithm CG

Problem n Iter Funct CG-it F. value Time

ARWHEAD 1000 34 364 37 0.000000D+00 0.04

ARWHEAD 10000 10 102 11 1.332134D−11 0.05

BDQRTIC 1000 46 293 84 3.983818D+03 0.05

BDQRTIC 10000 121 1217 204 4.003431D+04 0.94

BROYDN7D 1000 449 1923 2499 3.823419D+00 0.87

BROYDN7D 10000 853 3917 4394 3.613248D+03 14.72

BRYBND 1000 20 64 26 6.709348D−12 0.02

BRYBND 10000 20 64 26 6.226697D−12 0.12

CHAINWOO 1000 217 395 824 1.000001D+00 0.24

CHAINWOO 10000 278 814 872 1.000001D+00 1.92

COSINE 1000 22 64 40 −9.990000D+02 0.03

COSINE 10000 19 65 32 −9.999000D+03 0.08

CRAGGLVY 1000 45 212 102 3.364231D+02 0.05

CRAGGLVY 10000 115 775 177 3.377956D+03 0.86

CURLY10 1000 130 417 5651 −1.003163D+05 0.63

CURLY10 10000 135 1295 55801 −1.003163D+06 58.52

CURLY20 1000 202 405 6083 −1.001379D+05 1.15

CURLY20 10000 162 994 64081 −1.001313D+06 108.23

CURLY30 1000 322 520 6544 −1.003163D+05 1.76

DIXMAANA 1500 8 13 9 1.000000D+00 0.01

DIXMAANA 3000 8 14 8 1.000000D+00 0.00

DIXMAANB 1500 5 10 6 1.000000D+00 0.01

DIXMAANB 3000 5 10 6 1.000000D+00 0.00

DIXMAANC 1500 5 11 6 1.000000D+00 0.01

DIXMAANC 3000 5 11 6 1.000000D+00 0.00

DIXMAAND 1500 5 8 5 1.000000D+00 0.00

DIXMAAND 3000 5 8 5 1.000000D+00 0.01

DIXMAANE 1500 63 66 204 1.000000D+00 0.07

DIXMAANE 3000 88 91 277 1.000000D+00 0.15

DIXMAANF 1500 33 38 198 1.000000D+00 0.06

DIXMAANF 3000 32 37 238 1.000000D+00 0.13

DIXMAANG 1500 41 80 223 1.000000D+00 0.07

DIXMAANG 3000 65 133 400 1.000000D+00 0.26

continued on next page
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Table 3 (Continued)

Problem n Iter Funct CG-it F. value Time

DIXMAANH 1500 26 28 194 1.000000D+00 0.07

DIXMAANH 3000 28 30 256 1.000000D+00 0.13

DIXMAANI 1500 60 63 1997 1.000000D+00 0.40

DIXMAANI 3000 83 86 2585 1.000000D+00 1.09

DIXMAANJ 1500 58 118 213 1.089260D+00 0.08

DIXMAANJ 3000 63 135 291 1.176995D+00 0.16

DIXMAANK 1500 24 38 335 1.000000D+00 0.10

DIXMAANK 3000 28 41 333 1.000000D+00 0.16

DIXMAANL 1500 34 36 1648 1.000000D+00 0.40

DIXMAANL 3000 30 32 282 1.000000D+00 0.15

DQDRTIC 1000 33 274 34 7.461713D−26 0.03

DQDRTIC 10000 102 868 103 2.426640D−27 0.43

DQRTIC 1000 22 81 40 2.784985D−02 0.01

DQRTIC 10000 31 111 60 4.932478D−01 0.06

EDENSCH 1000 21 89 27 6.003285D+03 0.02

EDENSCH 10000 18 85 23 6.000328D+04 0.07

ENGVAL1 1000 11 34 16 1.108195D+03 0.01

ENGVAL1 10000 12 36 19 1.109926D+04 0.04

FLETCBV2 1000 1 1 0 −5.013384D−01 0.00

FLETCBV2 10000 1 1 0 −5.001341D−01 0.00

FLETCBV3 1000 11 11 33 −4.962265D+04 0.02

FLETCBV3 10000 200 200 487 −3.886849D+09 1.14

FLETCHCR 1000 47 339 101 6.067863D−06 0.04

From Tables 1–6 we can observe that on test problems where either Prec-CG or
PREQN take a long run, PREQN seems more efficient. The latter fact is possibly
the consequence of the choices in the optimization framework, and considering that
when PREQN is used the computation of inner iterations is stopped when a negative
curvature is encountered.1 However, it can be observed from Figs. 1 and 2 that our
approach allows on average a significant reduction of the number of the inner iter-
ations, proving that the choice hmax = 7 can be efficient. Thus, in the few hmax CG

1We remark, indeed, that the numerical results reported in [21] are pretty different from the results us-
ing PREQN in our Truncated Newton scheme, proving that the two optimization frameworks are likely
different, and not immediately comparable.
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Table 4 (Part II) Complete results relative to 112 test problems, using the Algorithm CG

Problem n Iter Funct CG-it F. value Time

FLETCHCR 10000 113 1082 163 7.578535D−07 0.51

FMINSURF 1024 32 88 1193 1.000000D+00 0.27

FMINSURF 5625 29 122 5062 1.000000D+00 5.32

FREUROTH 1000 38 300 50 1.214697D+05 0.05

FREUROTH 10000 107 1052 119 1.216521D+06 0.62

GENHUMPS 1000 625 1966 3463 4.356186D−14 1.05

GENHUMPS 10000 396 1299 1552 6.559308D−15 5.23

GENROSE 1000 836 2976 6203 1.000000D+00 1.07

GENROSE 10000 8113 28446 62729 1.000000D+00 84.28

LIARWHD 1000 42 251 61 8.352643D−19 0.04

LIARWHD 10000 112 1107 133 1.455368D−20 0.49

MOREBV 1000 6 6 70 9.088088D−09 0.02

MOREBV 10000 2 2 7 2.428066D−09 0.01

MSQRTALS 1024 153 522 4133 6.034837D−05 8.76

MSQRTBLS 1024 172 556 4375 3.642336D−07 9.31

NONCVXUN 1000 180 664 6040 2.325913D+03 1.08

NONCVXUN 10000 2173 10978 16270 2.323860D+04 40.39

NONCVXU2 1000 191 878 2028 2.317579D+03 0.46

NONCVXU2 10000 1869 9496 11198 2.316937D+04 30.32

NONDIA 1000 22 256 27 6.680969D−21 0.04

NONDIA 10000 78 1515 82 5.507180D−13 0.59

NONDQUAR 1000 43 112 215 1.135243D−04 0.05

NONDQUAR 10000 50 182 208 1.745194D−04 0.19

PENALTY1 1000 31 32 59 9.686175D−03 0.03

PENALTY1 10000 54 81 121 9.900151D−02 0.20

POWELLSG 1000 46 257 86 1.992056D−08 0.03

POWELLSG 10000 114 783 151 7.735314D−08 0.23

POWER 1000 56 180 221 2.472989D−09 0.05

POWER 10000 139 797 683 2.426355D−09 0.57

QUARTC 1000 22 81 40 2.784985D−02 0.01

QUARTC 10000 31 111 60 4.932478D−01 0.06

SCHMVETT 1000 14 35 37 −2.994000D+03 0.02

SCHMVETT 10000 19 69 38 −2.999400D+04 0.20

continued on next page
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Table 4 (Continued)

Problem n Iter Funct CG-it F. value Time

SINQUAD 1000 37 310 49 −2.942505D+05 0.04

SINQUAD 10000 104 1517 111 −2.642315D+07 0.98

SPARSINE 1000 108 583 3027 2.543028D−04 0.93

SPARSINE 10000 465 2362 57180 3.845129D−03 193.31

SPARSQUR 1000 22 66 34 6.266490D−09 0.02

SPARSQUR 10000 22 67 39 1.069594D−08 0.17

SPMSRTLS 1000 56 219 211 6.219291D+00 0.07

SPMSRTLS 10000 936 1389 10134 5.703552D+01 24.31

SROSENBR 1000 35 309 40 2.842418D−22 0.03

SROSENBR 10000 104 920 108 9.421397D−12 0.23

TESTQUAD 1000 135 684 2057 2.339186D−06 0.17

TOINTGSS 1000 2 3 1 1.001002D+01 0.00

TOINTGSS 10000 2 3 1 1.000100D+01 0.01

TQUARTIC 1000 21 185 27 3.767509D−10 0.02

TQUARTIC 10000 14 144 18 1.145916D−11 0.04

TRIDIA 1000 57 448 470 7.356860D−07 0.06

TRIDIA 10000 162 1789 2238 6.273872D−08 1.66

VARDIM 1000 37 37 72 1.058565D−20 0.03

VARDIM 10000 54 298 99 4.475275D−18 0.18

VAREIGVL 1000 20 45 167 3.903597D−10 0.04

VAREIGVL 10000 21 179 22 3.924839D−16 0.17

WOODS 1000 64 377 141 3.857513D−08 0.04

WOODS 10000 139 1095 223 5.031534D−08 0.51

iterations, used for constructing our preconditioner at the j -th outer iteration, we pos-
sibly span the subspace generated by “significant” eigenvectors of the Hessian matrix
Hj . We observe that our approach may be a winning strategy when dealing with large
scale problems. Indeed, here the main purpose is likely to reduce the overall number
of inner iterations, rather than accurately solving Newton’s equation.

Though from Figs. 1 and 2 Prec-CG seems efficient in terms of the number of
inner iterations, it is important to note that over the test problems our preconditioned
algorithm leads to 2 additional failures, with respect to the CG and PREQN. As re-
gards a comparison in terms of CPU time, we do not report the relative performance
profiles, since the results obtained by the algorithms are very similar and the profiles
do not give any evidence of the comparisons.
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Table 5 (Part I) Complete results relative to 112 test problems, using the preconditioner PREQN

Problem n Iter Funct CG-it F. value Time

ARWHEAD 1000 34 364 37 0.000000D+00 0.03

ARWHEAD 10000 10 102 11 1.332134D−11 0.05

BDQRTIC 1000 45 292 75 3.983818D+03 0.04

BDQRTIC 10000 118 1215 154 4.003431D+04 0.77

BROYDN7D 1000 416 1407 2404 3.823419D+00 0.82

BROYDN7D 10000 956 3437 5159 3.732349D+03 16.85

BRYBND 1000 20 64 26 2.077977D−12 0.02

BRYBND 10000 20 64 26 1.952957D−12 0.11

CHAINWOO 1000 83 247 261 1.000000D+00 0.11

CHAINWOO 10000 154 677 331 1.000000D+00 0.94

COSINE 1000 22 62 36 −9.990000D+02 0.03

COSINE 10000 20 64 30 −9.999000D+03 0.08

CRAGGLVY 1000 47 214 99 3.364231D+02 0.06

CRAGGLVY 10000 114 774 156 3.377956D+03 0.86

CURLY10 1000 96 385 5335 −1.003163D+05 0.76

CURLY10 10000 134 1294 37434 −1.003163D+06 51.57

CURLY20 1000 171 364 5355 −1.001379D+05 1.11

CURLY20 10000 178 1003 42661 −1.001313D+06 84.31

CURLY30 1000 203 401 4667 −1.003163D+05 1.27

DIXMAANA 1500 8 13 9 1.000000D+00 0.01

DIXMAANA 3000 8 14 8 1.000000D+00 0.01

DIXMAANB 1500 5 10 6 1.000000D+00 0.01

DIXMAANB 3000 5 10 6 1.000000D+00 0.01

DIXMAANC 1500 5 11 6 1.000000D+00 0.01

DIXMAANC 3000 5 11 6 1.000000D+00 0.01

DIXMAAND 1500 5 8 5 1.000000D+00 0.00

DIXMAAND 3000 5 8 5 1.000000D+00 0.01

DIXMAANE 1500 65 68 167 1.000000D+00 0.08

DIXMAANE 3000 86 89 229 1.000000D+00 0.19

DIXMAANF 1500 33 38 130 1.000000D+00 0.05

DIXMAANF 3000 35 40 198 1.000000D+00 0.12

DIXMAANG 1500 47 95 280 1.000000D+00 0.12

DIXMAANG 3000 75 145 439 1.000000D+00 0.30

continued on next page
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Table 5 (Continued)

Problem n Iter Funct CG-it F. value Time

DIXMAANH 1500 27 29 144 1.000000D+00 0.04

DIXMAANH 3000 31 33 186 1.000000D+00 0.12

DIXMAANI 1500 67 70 2260 1.000000D+00 0.61

DIXMAANI 3000 88 91 2746 1.000000D+00 1.39

DIXMAANJ 1500 67 106 220 1.086254D+00 0.11

DIXMAANJ 3000 62 113 272 1.183102D+00 0.19

DIXMAANK 1500 27 41 307 1.000000D+00 0.10

DIXMAANK 3000 29 42 320 1.000000D+00 0.20

DIXMAANL 1500 31 33 1326 1.000000D+00 0.38

DIXMAANL 3000 30 32 265 1.000000D+00 0.17

DQDRTIC 1000 33 274 34 7.461713D−26 0.03

DQDRTIC 10000 102 868 103 2.426640D−27 0.48

DQRTIC 1000 26 100 38 1.292595D−01 0.02

DQRTIC 10000 31 126 48 3.659146D+00 0.07

EDENSCH 1000 20 88 26 6.003285D+03 0.02

EDENSCH 10000 18 85 23 6.000328D+04 0.08

ENGVAL1 1000 11 34 16 1.108195D+03 0.01

ENGVAL1 10000 12 36 19 1.109926D+04 0.05

FLETCBV2 1000 1 1 0 −5.013384D−01 0.00

FLETCBV2 10000 1 1 0 −5.001341D−01 0.00

FLETCBV3 1000 144 144 150 −5.665012D+04 0.15

FLETCBV3 10000 99118 99118 99120 −3.668911D+09 482.26

FLETCHCR 1000 44 335 74 5.472471D−09 0.03

Finally, for a complete comparison between Prec-CG and PREQN some challeng-
ing applications should be considered, where possibly the role of negative curvatures
is essential for the overall progress of optimization scheme.

8 An alternative preconditioning technique

As we remarked in the previous sections, the main purpose of our preconditioning
strategy relies on using information from the current outer iteration of the Truncated
Newton scheme adopted. This approach seems theoretically more promising than the
standard approach currently used in the literature. Our choice avoids to delay the
use of the current information to subsequent outer iterations. Indeed, as we already
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Table 6 (Part II) Complete results relative to 112 test problems, using the preconditioner PREQN

Problem n Iter Funct CG-it F. value Time

FLETCHCR 10000 111 1079 134 2.871836D−08 0.49

FMINSURF 1024 46 193 1105 1.000000D+00 0.26

FMINSURF 5625 59 264 3083 1.000000D+00 3.63

FREUROTH 1000 37 299 46 1.214697D+05 0.03

FREUROTH 10000 106 1051 115 1.216521D+06 0.62

GENHUMPS 1000 1234 2931 3919 1.776020D−14 1.94

GENHUMPS 10000 568 1554 1565 4.201989D−11 6.63

GENROSE 1000 632 1263 3245 1.000000D+00 0.75

GENROSE 10000 5785 9849 31127 1.000000D+00 52.79

LIARWHD 1000 42 251 55 8.352643D−19 0.04

LIARWHD 10000 112 1107 125 1.455368D−20 0.49

MOREBV 1000 7 7 69 8.980894D−09 0.03

MOREBV 10000 2 2 7 2.428066D−09 0.01

MSQRTALS 1024 153 403 4197 3.239409D−08 9.17

MSQRTBLS 1024 144 392 2929 4.512623D−08 6.46

NONCVXUN 1000 136 407 3686 2.321100D+03 0.82

NONCVXUN 10000 635 2126 6510 2.325976D+04 15.55

NONCVXU2 1000 122 354 1328 2.316824D+03 0.35

NONCVXU2 10000 461 1522 3755 2.316903D+04 9.32

NONDIA 1000 22 256 27 6.680969D−21 0.00

NONDIA 10000 68 1305 71 2.373690D−17 0.51

NONDQUAR 1000 59 161 276 4.714600D−05 0.05

NONDQUAR 10000 51 204 184 1.738501D−04 0.22

PENALTY1 1000 31 35 50 9.686175D−03 0.04

PENALTY1 10000 54 81 115 9.900151D−02 0.22

POWELLSG 1000 46 257 70 3.067232D−08 0.04

POWELLSG 10000 114 783 137 7.735453D−08 0.23

POWER 1000 66 182 147 4.436287D−09 0.07

POWER 10000 169 803 444 9.479817D−10 0.54

QUARTC 1000 26 100 38 1.292595D−01 0.02

QUARTC 10000 31 126 48 3.659146D+00 0.06

SCHMVETT 1000 14 35 36 −2.994000D+03 0.04

SCHMVETT 10000 18 68 32 −2.999400D+04 0.19

continued on next page
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Table 6 (Continued)

Problem n Iter Funct CG-it F. value Time

SINQUAD 1000 38 313 47 −2.942505D+05 0.05

SINQUAD 10000 104 1517 109 −2.642315D+07 0.98

SPARSINE 1000 111 581 2864 2.156776D−05 0.99

SPARSINE 10000 409 2172 33699 1.829184D−03 122.14

SPARSQUR 1000 21 65 27 2.806241D−08 0.03

SPARSQUR 10000 23 68 36 3.854467D−09 0.19

SPMSRTLS 1000 56 205 192 6.219291D+00 0.08

SPMSRTLS 10000 1914 2339 23969 5.686345D+01 67.17

SROSENBR 1000 35 309 40 2.842418D−22 0.04

SROSENBR 10000 104 920 108 9.421397D−12 0.25

TESTQUAD 1000 126 675 1396 1.766825D−07 0.17

TOINTGSS 1000 2 3 1 1.001002D+01 0.01

TOINTGSS 10000 2 3 1 1.000100D+01 0.00

TQUARTIC 1000 122 367 207 3.975538D−16 0.10

TQUARTIC 10000 14 144 18 1.145916D−11 0.05

TRIDIA 1000 54 445 302 8.428542D−08 0.05

TRIDIA 10000 139 1766 1243 2.611580D−08 1.38

VARDIM 1000 37 37 72 7.308972D−21 0.04

VARDIM 10000 54 298 99 4.622696D−18 0.18

VAREIGVL 1000 23 48 155 1.271565D−10 0.06

VAREIGVL 10000 21 179 22 3.924839D−16 0.17

WOODS 1000 54 334 102 3.938291D−16 0.04

WOODS 10000 124 1066 170 8.120429D−10 0.43

remarked, the scheme in [21] generates at the outer iteration j a preconditioner which
is used in the (j + 1)-th outer iteration.

In order to carry on a full comparison with the scheme in the paper [21], we also
investigated the possibility to adopt the following strategy: to compute our precondi-
tioner at the j -th outer iteration, then to use it at the (j + 1)-th outer iteration. This
implies that now in order to solve Newton’s equation (5.1) we adopted the precon-
ditioned solver Prec-CG, which generated directions to build the preconditioner for
the (j + 1)-th outer iteration. On this guideline, can we really replace the role of
the Algorithm CG with the Algorithm Prec-CG, and still obtain a result similar to
Theorem 2.1? The next theorem answers the last question.

Author's personal copy



Preconditioning Newton–Krylov methods in nonconvex large scale optimization 285

Fig. 1 Comparison (detail on the left and full on the right) between Prec-CG vs CG, in terms of number
of inner iterations. The comparison includes all the test problems

Fig. 2 Comparison (detail on the left and full on the right) among Prec-CG vs PREQN vs CG, in terms
of number of inner iterations. The comparison includes only those test problems where negative curvature
directions are not detected

Theorem 8.1 Consider the preconditioned method Prec-CG(M) to solve Newton’s
equation (5.1); suppose it performs h ≤ n iterations, using the preconditioner M−1.
Then, the following matrices are generated

T̃h = L̃hD̃hL̃
T
h (8.1)

D̃h = diag

{
1

ã1
, . . . ,

1

ãh

}

L̃h =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

1

−
√

β̃1 1

−
√

β̃2
. . .

. . .
. . .

−
√

β̃h−1 1

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟
⎠
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R̃h =
[

z1

(rT
1 z1)1/2

, . . . ,
zh

(rT
h zh)1/2

]
(8.2)

such that Assumption 2.1 holds. Moreover, the matrix

M̃h = [
I − (

M1/2R̃h

)(
M1/2R̃h

)T ]+ (
M1/2R̃h

)|T̃h|
(

M1/2R̃h

)T (8.3)

satisfies the properties

(a) M̃h is symmetric and nonsingular;
(b) M̃−1

h = [I − (M1/2R̃h)(M1/2R̃h)
T ] + (M1/2R̃h)|T̃ −1

h |(M1/2R̃h)
T ;

(c) M̃h is positive definite and its spectrum Λ(M̃h) is given by

Λ(M̃h) = Λ(|T̃h|) ∪ Λ(In−h).

Proof The proof follows the same guidelines used to prove Theorem 2.1. �

We remark that in the previous theorem the items (d) and (e) of Theorem 2.1 are
not included, since in general they do not hold. Moreover, observe that unlike the ma-
trix M−1

h defined in Theorem 2.1, the matrix M̃−1
h in Theorem 8.1 cannot be directly

used as a preconditioner, since it requires the computation of M1/2 (see (8.3)), which
is unavailable. This implies that, as long as we use the same preconditioning strategy,
a full comparison between the preconditioner PREQN in [21] and our preconditioner
can be hardly carried on.

9 Conclusions and future work

In this paper we propose a new preconditioning technique for efficiently solving in-
definite linear systems arising in large scale optimization. Krylov subspace methods
are considered for the iterative solution of the linear systems, and the preconditioner
is obtained as by product of the Krylov methods iterates. In fact, the preconditioner
is built by means of an iterative decomposition of the system matrix, without stor-
ing or handling the system matrix. The only information on this matrix is gained
by a routine which computes the product of the matrix times a vector. The numeri-
cal results obtained showed that the proposed strategy may often reduce the number
of inner iterations needed to solve the optimization problem, within the framework
of Newton-type methods. In a future work we could consider extensions of our ap-
proach by introducing ad hoc adaptive preconditioning rules. On this purpose, let us
consider the relation Q(sPR

2 ) ≤ Q(sh) in Proposition 5.2; we can develop an adaptive
procedure which decides whenever our preconditioner has to be used in the Algo-
rithm Prec-CG. Indeed, though in principle the condition Q(sPR

2 ) ≤ Q(sh) indicates
that preconditioning is always promising, it does not ensure that the overall precondi-
tioned Truncated Newton method will outperform the unpreconditioned one. To this
aim, recalling the Algorithms CG and Prec-CG, we can set

z = |ã1|, βh = 1

2

(
h∑

i=1

|ai |pi

)T

Hj

(
h∑

i=1

|ai |pi

)

,
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γh = −rT
1

(
h∑

i=1

|ai |pi

)

, h ≥ 1.

Then, we can find the values of the parameter δ (δ > 1), which satisfy the condition
Q(sPR

2 ) ≤ δQ(sh), i.e.

βhz
2 + γhz − δ(βh + γh) ≤ 0. (9.1)

From Proposition 5.2 observe that since Q(sPR

2 ) < 0 and βh + γh = Q(sh) < 0,
the condition δ > 1 imposes that preconditioning yields a sufficient decrease of the
quadratic model of the objective function. Also observe that γh < 0 for any h ≥ 1, but
βh may have any real value. Thus, in a more general setting, we can assess a suitable
adaptive preconditioning strategy based on the values of γh and βh.
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Appendix

Proof of Proposition 5.2 From the definition of M−1
h , we have

M−1
h r1 = [(

I − RhR
T
h

)+ Rh|T |−1RT
h

]
r1

= r1 − Rh

⎛

⎜
⎜⎜
⎝

‖r1‖
0
...

0

⎞

⎟
⎟⎟
⎠

+ Rh

[
Lh|Dh|LT

h

]−1

⎛

⎜
⎜⎜
⎝

‖r1‖
0
...

0

⎞

⎟
⎟⎟
⎠

= RhL
−T
h |Dh|−1L−1

h

⎛

⎜⎜⎜
⎝

‖r1‖
0
...

0

⎞

⎟⎟⎟
⎠

= RhL
−T
h diag1≤i≤h

{|ai |
}

⎛

⎜⎜
⎜
⎝

1√
β1
...√

β1 · · ·βh−1

⎞

⎟⎟
⎟
⎠

‖r1‖

= Ph diag1≤i≤h

{|ai |
}

⎛

⎜⎜⎜
⎝

‖r1‖
‖r2‖

...

‖rh‖

⎞

⎟⎟⎟
⎠

=
h∑

i=1

|ai |pi. (A.1)
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From the latter relation, if ã1 = 1 in (5.4), then the directions sh and sPR

2 coincide.
Now, by definition we have

Q(sh) = 1

2
sT
h Hj sh + gT

j sh = 1

2

(
h∑

i=1

|ai |pi

)T

Hj

(
h∑

i=1

|ai |pi

)

− rT
1

(
h∑

i=1

|ai |pi

)

= 1

2

h∑

i=1

a2
i p

T
i Hjpi −

h∑

i=1

|ai |‖ri‖2 =
h∑

i=1

[
1

2
sgn

(
pT

i Hjpi

)− 1

]
|ai |‖ri‖2.

(A.2)

Moreover, from (A.1)

|ã1| =
∣∣
∣∣

rT
1 z1

p̃T
1 Hj p̃1

∣∣
∣∣ =

∣∣
∣∣
rT

1 M−1
h r1

zT
1 Hjz1

∣∣
∣∣ =

∣∣
∣∣

rT
1 (

∑h
i=1 |ai |pi)

(
∑h

i=1 |ai |pi)T Hj (
∑h

i=1 |ai |pi)

∣∣
∣∣

=
∣∣∣∣

∑h
i=1 |ai |‖ri‖2

∑h
i=1 a2

i p
T
i Hpi

∣∣∣∣ =
∑h

i=1 |ai |‖ri‖2

|∑h
i=1 a2

i p
T
i Hjpi |

;

thus, we have also

Q
(
sPR

2

) = 1

2

( ∑h
i=1 |ai |‖ri‖2

∑h
i=1 a2

i p
T
i Hjpi

)2
(

h∑

i=1

|ai |pi

)T

Hj

(
h∑

i=1

|ai |pi

)

−
∑h

i=1 |ai |‖ri‖2

|∑h
i=1 a2

i p
T
i Hjpi |

rT
1

(
h∑

i=1

|ai |pi

)

= 1

2

[∑h
i=1 |ai |‖ri‖2]2

∑h
i=1 a2

i p
T
i Hjpi

− [∑h
i=1 |ai |‖ri‖2]2

|∑h
i=1 a2

i p
T
i Hjpi |

= 1

2

[∑h
i=1 |ai |‖ri‖2]2

∑h
i=1 ai‖ri‖2

− [∑h
i=1 |ai |‖ri‖2]2

|∑h
i=1 ai‖ri‖2| .

Furthermore, observe that Q(sPR

2 ) ≤ Q(sh) if and only if

1

2

[∑h
i=1 |ai |‖ri‖2]2

∑h
i=1 ai‖ri‖2

− [∑h
i=1 |ai |‖ri‖2]2

|∑h
i=1 ai‖ri‖2| ≤ 1

2

h∑

i=1

ai‖ri‖2 −
h∑

i=1

|ai |‖ri‖2,

or equivalently

1
2 [∑h

i=1 |ai |‖ri‖2]2 − sgn(
∑h

i=1 ai‖ri‖2)[∑h
i=1 |ai |‖ri‖2]2

∑h
i=1 ai‖ri‖2

≤ 1

2

h∑

i=1

ai‖ri‖2 −
h∑

i=1

|ai |‖ri‖2. (A.3)
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To prove the latter relation we separately consider two cases: the case∑h
i=1 ai‖ri‖2 > 0 and the case

∑h
i=1 ai‖ri‖2 < 0. In the first case the relation (A.3)

holds if and only if

1

2

[
h∑

i=1

|ai |‖ri‖2

]2

− sgn

(
h∑

i=1

ai‖ri‖2

)[
h∑

i=1

|ai |‖ri‖2

]2

≤ 1

2

[
h∑

i=1

ai‖ri‖2

]2

−
[

h∑

i=1

|ai |‖ri‖2

]
h∑

i=1

ai‖ri‖2

or equivalently if and only if

−1

2

[
h∑

i=1

|ai |‖ri‖2

]2

≤
[

1

2

h∑

i=1

ai‖ri‖2 −
h∑

i=1

|ai |‖ri‖2

]
h∑

i=1

ai‖ri‖2,

and the latter inequality holds since

−1

2

[(
h∑

i=1

|ai |‖ri‖2

)2

+
(

h∑

i=1

ai‖ri‖2

)2]

+
h∑

i=1

|ai |‖ri‖2
h∑

i=1

ai‖ri‖2 ≤ 0.

In the second case the relation (A.3) is equivalent to

3

2

[
h∑

i=1

|ai |‖ri‖2

]2

≥ 1

2

[
h∑

i=1

ai‖ri‖2

]2

+
∣∣∣∣∣

h∑

i=1

ai‖ri‖2

∣∣∣∣∣

h∑

i=1

|ai |‖ri‖2,

which holds since

3

2

[
h∑

i=1

|ai |‖ri‖2

]2

= 1

2

[
h∑

i=1

|ai |‖ri‖2

]2

+
∣∣∣∣∣

h∑

i=1

|ai |‖ri‖2

∣∣∣∣∣

h∑

i=1

|ai |‖ri‖2

≥ 1

2

[
h∑

i=1

ai‖ri‖2

]2

+
∣∣∣
∣∣

h∑

i=1

ai‖ri‖2

∣∣∣
∣∣

h∑

i=1

|ai |‖ri‖2.

This finally proves that

Q
(
sPR

2

) ≤ Q(sh). �
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