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Abstract

In this paper we present a redesign of a linear algebra kernel of an interior point method
to avoid the explicit use of problem matrices. The only access to the original problem
data needed are the matrix-vector multiplications with the Hessian and Jacobian matrices.
Such a redesign requires the use of suitably preconditioned iterative methods and imposes
restrictions on the way the preconditioner is computed. A two-step approach is used to
design a preconditioner. First, the Newton equation system is regularized to guarantee better
numerical properties and then it is preconditioned. The preconditioner is implicit, that is,
its computation requires only matrix-vector multiplications with the original problem data.
The method is therefore well-suited to problems in which matrices are not explicitly available
and/or are too large to be stored in computer memory. Numerical properties of the approach
are studied including the analysis of the conditioning of the regularized system and that of
the preconditioned regularized system. The method has been implemented and preliminary
computational results for small problems limited to 1 million of variables and 10 million of
nonzero elements demonstrate the feasibility of the approach.

Keywords: Linear Programming, Quadratic Programming, Matrix-Free, Interior Point Methods,
Iterative Methods, Implicit Preconditioner.
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1 Introduction

Interior Point Methods (IPMs) for linear and quadratic programming can solve very large prob-
lems in a moderate number of iterations. The best known to date primal-dual methods [26, 37]
have a guaranteed worst-case complexity of O(

√
n) iterations to reach optimality. Their prac-

tical performance is much better than that guaranteed by the worst-case complexity analysis.
Indeed, they usually converge in a number of iterations which is proportional to log n [3, 10].
Even with such a small number of iterations these methods can occasionally be computationally
expensive.

IPMs rely on Newton method and therefore share the usual disadvantages of second-order meth-
ods: at each iteration they require building and solving linear equations corresponding to KKT
systems for the barrier subproblem. These computations might sometimes get expensive. This
is bound to happen when solving dense problems such as for example quadratic programs arising
in support vector machine training [17] or linear programs arising in basis pursuit [9], but it
might also occur when solving certain sparse problems in which the patterns of nonzero entries
in the Hessian and Jacobian matrices render KKT systems difficult for direct approaches as
is often the case when dealing with problems arising from discretisations of partial differential
equations [5]. As optimization problems get larger and larger this aspect of IPM methodology
seems to be a bottleneck for their further development and hampers their ability to solve huge
problems some of which cannot even be explicitly formulated. The technique presented in this
paper aims at removing these drawbacks.

We redesign interior point methods by replacing direct linear algebra with a suitably precondi-
tioned iterative method. This creates a difficulty because, unlike direct methods which usually
provide very accurate directions, iterative methods compute only inexact directions. We accept
the negative consequence of such a choice, that is, the need of performing more IPM iterations
but expect great benefits from the reduction of effort required to compute inexact solution of
Newton systems. The use of inexact Newton method goes back to Dembo et al. [13] and has
had a number of applications including those in the context of IPMs [4, 19, 27]. A number of
interesting developments have been focused on the analysis of conditions which inexact direc-
tions should satisfy to guarantee good convergence properties of the IPM [1, 28]. However the
focus of this paper lies elsewhere.

We would like to solve KKT systems at the lowest possible cost. Moreover, we would like to avoid
any excessive storage requirements and computations which might hamper the ability of solving
huge problems. To achieve the goal we impose a condition that the Hessian and Jacobian
matrices can be used only to perform multiplications with. In other words, we redesign the
interior point method to work in a matrix-free regime.

Iterative methods for KKT systems have attracted a lot of attention in the recent years. 8
out of 10 papers published in a special issue of COAP [23] which was devoted to linear algebra
techniques of IPMs addressed the use of iterative methods. The performance of iterative methods
and more specifically, of Krylov-subspace methods [25] depends on the spectral properties of the
linear system. A plethora of preconditioners have been designed for linear systems, especially
for those arising from the discretisation of partial differential equations (PDEs). The reader is
referred to [5] for an up-to-date survey of recent developments in this area. KKT systems arising
in optimization and saddle point systems arising in PDE discretisations share several common
features but display essential differences as well. The structure of PDE-originated saddle point
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systems usually enjoys some form of regularity in the sparsity pattern which is a consequence
of the discretisation process. In contrast, the sparsity pattern of a usual KKT system does not
display any regularity at all. KKT systems arising in barrier subproblems of IPMs have a special
feature of added diagonal scaling matrix resulting from the barrier terms. This matrix has a
very large condition number (which goes to infinity when barrier term goes to zero) and causes
the condition number of the KKT system to be unbounded.

The performance of iterative methods depends on the spectral properties of the linear system.
Ideally, one would like all the eigenvalues of the matrix involved to be clustered in one or only a
few intervals and/or the condition number of the matrix to be as small as possible [25]. This is
an ultimate goal when designing preconditioners for KKT systems arising in IPMs [23, 12]. The
choice of a preconditioner faces a particular difficulty because the condition number of these
systems can go to infinity when the algorithm approaches an optimal solution. To guarantee
a bounded condition number of the preconditioned linear system one has to accept that the
condition number of the preconditioner may have to go to infinity as well. This causes all sorts
of problems to the iterative method. One of them is that the termination criteria of the method
which relies on the residual in the preconditioned space does not guarantee a small residual in
the original space.

In this paper we propose a different approach to the problem. Instead of directly preconditioning
the original KKT system arising in the barrier subproblem, we propose a two-step procedure.
First, we regularize the KKT system to guarantee that its condition number is bounded; then,
we design a preconditioner for the regularized system.

We also set additional requirements on the preconditioner: it has to be computed without
explicitly forming (and factoring) the KKT system. The only operations the preconditioner is
allowed to use are matrix-vector multiplications performed with the Hessian and Jacobian and
its transposition. This is necessary to achieve a matrix-free implementation of interior point
method.

It is worth mentioning at this point an interesting recent work [11] which proposed a matrix-
free algorithm for equality constrained nonlinear programming problems. There are essential
differences between our approach and [11]. In this paper we deal with interior point methods and
need to remedy the ill-conditioning introduced by the presence of barrier terms while [11] focuses
on the ill-conditioning that may result from the rank-deficient Jacobians. Secondly, we regularize
both the primal and dual variables (which is well-suited to the primal-dual interior point method)
while [11] regularizes the Hessian matrix (what in our terms would correspond to regularizing
the primal solution only). Finally, and most importantly, we propose a preconditioner which
can be computed in a matrix-free regime while [11, p. 1244] uses unpreconditioned MINRES.

The paper is organised as follows. In Section 2 we will introduce the problem and define the
notation used. In Section 3 we will give motivations for the use of a particular primal-dual
regularization and we will discuss the properties of regularized KKT system. In Section 4 we
will analyse the normal equation form of the KKT system. In Section 5 we will introduce
the preconditioner and perform the spectral analysis of the preconditioned linear system. In
Section 6 we will focus on the computational aspects of the matrix-free interior point method
and we will discuss the preliminary results obtained for small scale problems (with number of
variables below 1 million and number of nonzero entries below 10 million). Finally, in Section 7
we will give our conclusions and comment on possible further developments of the method.
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2 KKT System in Interior Point Methods

In this paper we are concerned with the use of primal-dual interior point methods to solve convex
quadratic programming problems. We assume that the primal-dual pair of problems has the
form

Primal Dual

min cT x + 1
2xT Qx max bT y − 1

2xT Qx
s.t. Ax = b, s.t. AT y + s − Qx = c,

x ≥ 0; y free, s ≥ 0,

(1)

where A ∈ Rm×n has full row rank m ≤ n, Q ∈ Rn×n is a positive semidefinite matrix,
x, s, c ∈ Rn and y, b ∈ Rm. The main computational effort of the primal-dual algorithm consists
in the computation of the Newton direction for the barrier subproblem

[
−(Q + Θ−1) AT

A 0

] [
∆x
∆y

]

=

[
f
d

]

, (2)

where ∆x ∈ Rn, ∆y ∈ Rm are Newton directions in the primal and dual space, f ∈ Rn, d ∈ Rm

are appropriately computed right-hand-side vectors, Θ = XS−1 is the diagonal scaling matrix
resulting from the presence of barrier terms, and X and S are diagonal matrices in Rn×n with
elements of vectors x and s spread across the diagonal, respectively.

The matrix Θ brings an unwelcome feature to this system. When the algorithm approaches the
optimal solution, the primal variables and dual slacks converge to their optimal values and for
a linear program display a partition into a strongly complementary pair [37, p. 27]:

xj → x∗
j > 0 and sj → s∗j = 0, for j ∈ B,

xj → x∗
j = 0 and sj → s∗j > 0, for j ∈ N .

(3)

As a result the elements θj, j ∈ B, go to infinity and the elements θj , j ∈ N , go to zero. (3)
implies that the eigenvalues of the (1,1) block in (2) may spread from zero to infinity. In the
case of linear programming, when Q = 0, this is inevitable. For quadratic problems there may
exist pairs which are not strictly complementary, which further complicates (3). The spread of
eigenvalues makes the solution of (2) challenging. Surprisingly, direct methods do not seem to
suffer from this property. An old result of Dikin [14] (see also Stewart [36]) guarantees that if
the optimization problem is feasible then the normal equation linear system (Schur complement
obtained by eliminating the (1,1) block from (2)) produces a bounded solution irrespective of
the spread of Θ. Indeed, direct methods applied to (2) provide sufficiently accurate solution
regardless the ill-conditioning of this linear system [3].

Unfortunately, for iterative (Krylov-subspace) methods the ill-conditioning of Θ and the resulting
ill-conditioning of (2) makes the system intractable unless appropriately preconditioned [7, 21,
29, 30]. We formally state this observation below. Before we do that let us state the assumptions
to be satisfied by problem (1) and the primal-dual algorithm applied to solve it.
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Assumptions:

A1 The optimal solution of (1) exists and satisfies

(x∗, y∗, s∗) is O(1).

A2 All iterates of the primal-dual algorithm stay in the symmetric neighbourhood of the
(infeasible) central path

N s
β = {(x, y, s) ∈ F : βµ ≤ xjsj ≤

1

β
µ},

for β ∈ (0, 1) and F = {(x, y, s) : ‖b − Ax‖ ≤ βbµ‖b − Ax0‖, ‖c − AT y − s + Qx‖ ≤
βcµ‖c − AT y0 − s0 + Qx0‖, x > 0, s > 0}, where (x0, y0, s0) is an initial point, µ = xT s/n
is the barrier parameter and βb and βc are given constants.

As a simple consequence of these assumptions we claim

Lemma 2.1 If A1 and A2 are satisfied then

min
j

θ−1
j = O(µ) and max

j
θ−1
j = O(µ−1). (4)

Proof. For j ∈ B, we have θ−1
j =

sj

xj
=

xjsj

x2

j
= O(µ)

O(1) = O(µ), hence minj θ−1
j = O(µ). For

j ∈ N , we have θ−1
j =

sj

xj
=

s2

j

xjsj
= O(1)

O(µ) = O(µ−1), hence maxj θ−1
j = O(µ−1). �

Throughout the paper we will assume that the singular values of A are

0 < σ1 ≤ σ2 ≤ · · · ≤ σm, (5)

and the eigenvalues of Q are
0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn. (6)

In other words, we assume that A has full row rank and that Q is positive semi-definite. (We
cover the special case of linear programming where Q = 0.) To simplify the analysis we will also
denote the ordered eigenvalues of Q + Θ−1 as

0 < π1 ≤ π2 ≤ · · · ≤ πn, (7)

and observe that
τ1 + min

j
θ−1
j ≤ π1 and πn ≤ τn + max

j
θ−1
j . (8)

The augmented system matrix (2) is certainly nonsingular and its eigenvalues are real and satisfy

λ−n ≤ λ−n+1 ≤ · · · ≤ λ−1 < 0 < λ1 ≤ λ2 ≤ · · · ≤ λm. (9)

Following Lemma 2.1 in Rusten and Winther [33] (see also Lemma 2.1 in Silvester and Wathen
[35]) we provide bounds for these eigenvalues.
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Lemma 2.2 The eigenvalues of the augmented system matrix (2) satisfy:

−1

2
(πn +

√

π2
n + 4σ2

m) ≤ λ−n (10)

λ−1 ≤ −π1 (11)

1

2
(
√

π2
n + 4σ2

1 − πn) ≤ λ1 (12)

λm ≤ 1

2
(
√

π2
1 + 4σ2

m − π1). (13)

Proof. See the proof of Lemma 2.1 in [33]. �

Consequently, the eigenvalue with the largest absolute value satisfies

max
j

|λj | = max{−λ−n, λm}

≤ max{1

2
(πn +

√

π2
n + 4σ2

m),
1

2
(
√

π2
1 + 4σ2

m − π1)}
≤ max{πn + σm, σm}
= πn + σm ≤ τn + max

j
θ−1
j + σm. (14)

It is reasonable to assume that πn ≫ 1 and σ1 ≤ 1 so the left hand side of (12) is

1

2
(
√

π2
n + 4σ2

1 − πn) =
2σ2

1
√

π2
n + 4σ2

1 + πn

≈ σ2
1

πn
.

Hence the eigenvalue with the smallest absolute value satisfies

min
j

|λj | = min{−λ−1, λ1}

≥ min{π1,
1

2
(
√

π2
n + 4σ2

1 − πn)}

≈ min{π1,
σ2

1

πn
}. (15)

We will slightly abuse the notation and write minj |λj | ≥ min{π1,
σ2

1

πn
}. Both terms on the

right hand side of this inequality may get very small. From (8) π1 ≥ τ1 + minj θ−1
j and

σ2

1

πn
≥

σ2

1

τn+maxj θ−1

j

. In a (difficult) case of solving an LP problem we have τ1 = τn = 0 and observe that

the condition number of augmented system (2) becomes

κaug ≤
σm + maxj θ−1

j

min{minj θ−1
j , σ2

1/maxj θ−1
j }

.

Even if A is well conditioned and σ1 and σm are both O(1), following Lemma 2.1 we deduce that
the condition number of the augmented system (2) may get as large as O(µ−2). In the purely
theoretical case of nondegenerate linear programs (the author has not yet seen a nondegenerate
LP in his computational practice), a better bound O(µ−1) for the condition number of (2) could
be derived. This is a consequence of the fact that in nondegenerate case, the columns of A
corresponding to variable indices j ∈ B form a nonsingular optimal basis.
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Summing up, ill-conditioning of (2) is an inevitable consequence of the use of primal-dual interior
point methods and the use of logarithmic barrier penalties which contribute a badly behaving
term Θ−1 to (2). Independently of whether we consider a computationally relevant degenerate
case when κaug = O(µ−2) or a nondegenerate case (of theoretical interest only) when κaug =
O(µ−1), with the barrier term µ going to zero, κaug inevitably goes to infinity. This makes the
system very difficult for iterative methods.

In the following sections we will discuss a two-step procedure to design a suitable preconditioner
for (2).

3 Regularized KKT System

Following [22], Saunders [34] suggested adding proximal terms to optimization problems in
order to improve the numerical properties of the corresponding KKT systems. Although his
development was concerned with linear programs, it can be easily applied to quadratic problems
as well. Instead of dealing with (1) we consider the following regularized primal quadratic
program

min cT x +
1

2
xT Qx +

γ2

2
xT x +

1

2
pTp

s.t. Ax + δp = b, (16)

x ≥ 0, p free;

where γ and δ are (small) positive terms and p ∈ Rm is a free variable. It is intuitive that
as long as γ and δ are small the solution of (16) does not differ too much from that of (1).
Indeed, the term 1

2γ2xT x in the objective plays negligible role compared to the original objective
cT x + 1

2xT Qx. Similarly, the strong penalty for large p in form of its norm added to the
objective forces p to be small, and therefore forces the linear constraint Ax = b to be satisfied
approximately.

The reduced KKT system corresponding to the barrier subproblem for (16) has the following
form [

−(Q + Θ−1 + γ2I) AT

A δ2I

] [
∆x
∆y

]

=

[
f

′

d
′

]

, (17)

where f
′ ∈ Rn, d

′ ∈ Rm are appropriately computed right-hand-side vectors.

The regularization proposed in [2] has a different justification. The primal-dual pair (1) is
replaced by two problems: an approximate primal and an approximate dual:

min cT x+ 1
2xT Qx+ 1

2(x−x0)
T Rp(x−x0) max bT y− 1

2xT Qx− 1
2(y−y0)

T Rd(y−y0)
s.t. Ax = b, s.t. AT y + s − Qx = c,

x ≥ 0; y free, s ≥ 0,
(18)

where primal and dual positive definite diagonal regularization matrices Rp ∈ Rn×n and Rd ∈
Rm×m and primal and dual reference points in proximal terms x0 ∈ Rn and y0 ∈ Rm, respec-
tively can be chosen dynamically. The elements on the diagonal of the regularization matrices
are small and the reference points x0 and y0 change at each iteration and are set to the current
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primal and dual iterates, respectively, see [2] for more detail. The following regularized KKT
system is solved at each iteration of the primal-dual interior point method

[
−(Q + Θ−1 + Rp) AT

A Rd

] [
∆x
∆y

]

=

[
f

′′

d
′′

]

, (19)

where f
′′ ∈ Rn, d

′′ ∈ Rm are appropriately computed right-hand-side vectors.

While (17) adds uniform regularization terms to all diagonal elements of both the (1,1) and
(2,2) blocks in the augmented system, (19) allows for a dynamic choice of the regularization
terms and achieves similar benefits at a lower cost of introducing less of perturbation to the
original reduced KKT system (2). Indeed, dynamic choice of Rp and Rd means that acceptable
pivots are not regularized at all while potentially unstable pivots (dangerously close to zero) are
suitably regularized to prevent the spread of numerical errors [2]. The reader interested in other
regularization techniques is referred to [8, 20] and the references therein.

In this paper we are interested in the primal-dual regularization producing the system (19). To
simplify the analysis we assume that the elements of the primal and dual regularizations satisfy

γ2 ≤ Rpj ≤ Γ2, ∀j and δ2 ≤ Rdi ≤ ∆2, ∀i, (20)

where Rpj and Rdi are the jth and ith elements of diagonal matrices Rp and Rd, respectively
and Γ and ∆ are given constants. However, later we will relax some of these assumptions.

To compare the numerical properties of augmented systems (19) and (2) we derive bounds on
the eigenvalues of (19). As in the previous section, we will assume that the eigenvalues of
Q̃ = Q + Θ−1 + Rp are

0 < π̃1 ≤ π̃2 ≤ · · · ≤ π̃n, (21)

and observe that

τ1 + min
j

{θ−1
j + Rpj} ≤ π̃1 and π̃n ≤ τn + max

j
{θ−1

j + Rpj}. (22)

The eigenvalues of (19) are real and satisfy

λ̃−n ≤ λ̃−n+1 ≤ · · · ≤ λ̃−1 < 0 < λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃m. (23)

Lemma 3.1 The eigenvalues of the augmented system matrix (19) satisfy:

−1

2
(π̃n − δ2 +

√

(π̃n + δ2)2 + 4σ2
m) ≤ λ̃−n (24)

λ̃−1 ≤ −π̃1 (25)

1

2
(
√

(π̃n + δ2)2 + 4σ2
1 − π̃n + δ2) ≤ λ̃1 (26)

λ̃m ≤ 1

2
(
√

(π̃1 + ∆2)2 + 4σ2
m − π̃1 + ∆2). (27)

Proof. Let (u, v), u ∈ Rn, v ∈ Rm denote an eigenvector associated with the eigenvalue λ̃. The
eigenpair satisfies the following system of equations

−Q̃u + AT v = λ̃u (28)

Au + Rdv = λ̃v. (29)
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Suppose λ̃ < 0. From (29) we have (λ̃I − Rd)v = Au. We substitute for v in (28) and multiply
the equation with uT to obtain

uT Q̃u + uT AT (Rd − λ̃I)−1Au = −λ̃uT u.

Taking the largest possible terms on the left-hand-side of this equation yields

π̃nuT u + (δ2 − λ̃)−1σ2
muT u ≥ −λ̃uT u,

which can be managed into the following inequality

λ̃2 + λ̃(π̃n − δ2) − π̃nδ2 − σ2
m ≤ 0.

Any negative λ̃ which satisfies this quadratic inequality has to satisfy (24).

To prove (25) we multiply equations (28) and (29) with uT and vT , respectively and subtract
the second equation from the first one to obtain

uT Q̃u + λ̃uT u = λ̃vT v − vT Rdv.

We consider λ̃ < 0 again hence the right-hand-side of this equation is nonpositive and therefore
uT Q̃u + λ̃uT u ≤ 0. Rearranging this inequality we obtain

π̃1u
T u ≤ uT Q̃u ≤ −λ̃uT u,

which yields (25).

Let us now consider the case of λ̃ > 0. Using (28) we get AT v = (Q̃ + λ̃I)u. We substitute for
u in (29) and multiply the equation with vT to obtain

vT A(Q̃ + λ̃I)−1AT v + vT Rdv = λ̃vT v. (30)

Taking the smallest possible terms on the left-hand-side of this equation yields

(π̃n + λ̃)−1σ2
1v

T v + δ2vT v ≤ λ̃vT v,

which after rearrangements gives the following inequality

λ̃2 + λ̃(π̃n − δ2) − π̃nδ2 − σ2
1 ≥ 0.

Any positive λ̃ which satisfies this quadratic inequality has to satisfy (26).

Finally, to get the last remaining bound, we consider again (30) and for λ̃ > 0 take the largest
possible terms on its left-hand-side to get

(π̃1 + λ̃)−1σ2
mvT v + ∆2vT v ≥ λ̃vT v,

which after rearrangements gives the following inequality

λ̃2 + λ̃(π̃1 − ∆2) − π̃1∆
2 − σ2

m ≤ 0.

Any positive λ̃ which satisfies this quadratic inequality has to satisfy (27). �

We observe that the bounds on the eigenvalues with the largest possible absolute value λ−n and
λm given by inequalities (24) and (27), respectively, are similar to those obtained for the original
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system (2) and given by (10) and (13), respectively. On the other hand, the bounds on small
eigenvalues have been changed significantly by the presence of primal and dual regularization.
A comparison of (25) and (11) shows that λ̃−1 is much better bounded away from zero than
λ−1. Moreover, (25) allows for a selective regularization which should be applied only to the
smallest elements θ−1

j , see (22). The elements θ−1
j which are large enough do not have to

be perturbed at all and the corresponding terms of Rpj can be set to zero thus reducing the
perturbation to the original system. A comparison of (26) and (12) reveals that λ̃1 is shifted
away from zero by dual regularization. Indeed,

√

(π̃n + δ2)2 + 4σ2
1 − π̃n ≥ δ2 and therefore

1
2(

√

(π̃n + δ2)2 + 4σ2
1 − π̃n + δ2) ≥ δ2. Summing up, minj |λ̃j| = min{−λ̃−1, λ̃1} is much larger

than that for the original system (15) and the condition number of the regularized augmented
system (19) is therefore significantly smaller than that of the original system (2).

4 From Augmented System to Normal Equation

In this paper we are concerned with the use of iterative methods to solve the reduced KKT system
(2) and its regularized form (19). A first decision to make is whether an iterative method should
be applied to the indefinite augmented system formulation of KKT conditions such as (2) and
(19) or to a reduced positive definite normal equation (Schur complement) formulation of these
equations. The use of iterative methods such as conjugate gradients for indefinite systems may
require some extra safeguards [18]. The subject has attracted a lot of attention in recent years
[29, 32]. It requires care to be taken about preconditioners [21, 7] as well and/or special versions
of the projected conjugate gradient method to be employed [24, 15]. The reduced positive
definite normal equation formulation of (2) or (19) allows for a straightforward application of
conjugate gradients and we will use it in this paper.

Normal equation formulations are obtained by elimination of ∆x from the augmented system
and take the following forms

A(Q + Θ−1)−1AT ∆y = h (31)

and
(A(Q + Θ−1 + Rp)

−1AT + Rd)∆y = h
′′

, (32)

for original system (2) and regularized system (19), respectively. We will start the analysis by
providing bounds on the condition numbers of these two normal equation systems. We will refer
once again to the notation introduced in earlier sections with singular values of A given by (5),
eigenvalues of Q given by (6) and eigenvalues of Q + Θ−1 and Q + Θ−1 + Rp given by (7) and
(21), respectively. We will denote the eigenvalues of (31) as

0 < η1 ≤ η2 ≤ · · · ≤ ηm (33)

and the eigenvalues of (32) as
0 < η̃1 ≤ η̃2 ≤ · · · ≤ η̃m. (34)

Lemma 4.1 The eigenvalues of the normal equation matrix (31) satisfy:

σ2
1(τn + max

j
θ−1
j )−1 ≤ η1 (35)

ηm ≤ σ2
m(τ1 + min

j
θ−1
j )−1. (36)
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We omit an easy proof of this Lemma. Instead, we will comment on a special case of linear
programming, when Q = 0 and τ1 = τn = 0. We observe that for well-centered iterates
combining Lemma 2.1 and Lemma 4.1 yields η1 ≥ σ2

1O(µ) and ηm ≤ σ2
mO(µ−1), hence

κNE ≤ σ2
mO(µ−1)

σ2
1O(µ)

≤ κ2(A)O(µ−2). (37)

With the extra assumption that the linear program is nondegenerate we can improve this bound.
Indeed, for a nondegenerate problem the optimal partition (3) defines a set of columns j ∈ B
corresponding to a nonsingular basis matrix and yields η1 ≥ σ2

1O(1). In such case κNE ≤
κ2(A)O(µ−1). Clearly, as µ goes to zero the bounds of κNE go to infinity and indicate that the
original system (31) gets very ill-conditioned.

The regularized system (32) displays much better numerical properties.

Lemma 4.2 The eigenvalues of the normal equation matrix (32) satisfy:

σ2
1(τn + max

j
(θ−1

j + Rpj))
−1 + min

i
Rdi ≤ η̃1 (38)

η̃m ≤ σ2
m(τ1 + min

j
(θ−1

j + Rpj))
−1 + max

i
Rdi. (39)

Again, we skip a simple proof and analyze a special case of LP, when Q = 0 and τ1 = τn = 0.
Using (20), the bounds (38) and (39) are simplified

δ2 ≤ η̃1 (40)

η̃m ≤ σ2
mγ−2 + ∆2, (41)

and the condition number of the regularized normal equation matrix satisfies

κ̃NE ≤ σ2
mγ−2 + ∆2

δ2
=

σ2
m + γ2∆2

γ2δ2
. (42)

The bound does not depend on µ. It depends only on the level of regularization and σm, the
largest singular value of A. It is reasonable to assume that σm can be kept moderate, say,
O(1). Indeed, this can be achieved with appropriate scaling of the optimization problem. The
regularization terms γ2 and δ2 could be kept large enough to guarantee a good bound on κ̃NE .

One has to realise however that large regularization terms γ2 and δ2 mean that (19) differs
significantly from (2) and Newton direction computed from (19) may have little in common
with the true primal-dual interior point direction obtained from (2). In our approach we look
for a compromise solution where γ2 and δ2 are small (to keep (19) close to (2)) but large enough
to provide a reasonable bound in (42).

To conclude the analysis of this section we will recall a standard result regarding the speed of
convergence of the conjugate gradient (CG) algorithm [25, eq. (2.15), p. 17] which guarantees

that an error is systematically reduced at every CG iteration by a factor of κ1/2−1
κ1/2+1

. Assuming a

uniform dual regularization Rdi = δ2, ∀i, that is δ2 = ∆2, and assuming that the regularization
terms are small (δ ≪ σm and γ ≪ σm) from (42) we obtain

κ̃
1/2
NE ≤ (1 +

σ2
m

γ2δ2
)1/2 ≈ σm

γδ
≫ 1,
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and then deduce

κ1/2 − 1

κ1/2 + 1
≈

σm
γδ − 1
σm
γδ + 1

=
1 − γδ

σm

1 + γδ
σm

≈ 1 − 2
γδ

σm
. (43)

The last approximation shows that the larger the regularizations in the primal and dual spaces
the better (smaller) the condition number of (19) is, and consequently the convergence of CG
algorithm applied to (32) is faster.

Following our earlier comments we want to avoid over-regularization in order to keep (19) close
to (2). Hence we will use very small regularizations and we will have to accept that γδ ≪ σm. In
this case the speed of convergence predicted by (43) is not enough to satisfy our needs. Indeed,
so far we have only met the first objective of our approach: we have used the primal-dual
regularization to guarantee that the condition number of (32) is bounded and independent of
the barrier parameter µ. We do not intend to apply the CG method directly to (32). The second
important feature of our approach is the use of a suitable preconditioner for this regularized
normal equation system. The design and analysis of this preconditioner are subject of next
section.

5 Preconditioner for Regularized Normal Equation

We observe an important feature of the regularized normal equation matrix in (32)

GR = A(Q + Θ−1 + Rp)
−1AT + Rd, (44)

which has been captured by the bounds on its eigenvalues in Lemma 4.2.

All eigenvalues of this matrix remain in an interval determined by (38) and (39). For our choice
of regularization (20) all small eigenvalues are clustered above the lower bound (40) and the
large eigenvalues are spread and may reach up to the upper bound (41). Our preconditioner
P ∈ Rm×m attempts to identify the largest eigenvalues of GR and guarantee that κ(P−1GR) ≪
κ(GR). This is achieved by computing a partial Cholesky decomposition of GR with complete
pivoting choosing the largest (diagonal) pivots from GR and the updated Schur complements.
We compute only a partial decomposition, that is we truncate the process after producing the
first k columns of Cholesky corresponding to k largest pivots in GR, where k is a predetermined
number such that k ≪ m. We compute

GR =

[
L11

L21 I

] [
DL

S

] [
LT

11 LT
21

I

]

, (45)

where L =

[
L11

L21

]

is a trapezoidal matrix which contains the first k columns of Cholesky

factor of GR (with triangular L11 ∈ Rk×k and L21 ∈ R(m−k)×k containing the remaining part
of Cholesky columns), DL ∈ Rk×k is a diagonal matrix formed by k largest pivots of GR and
S ∈ R(m−k)×(m−k) is the Schur complement obtained after eliminating k pivots.

If we had set k = m, (45) would have determined an exact Cholesky decomposition of GR =
LDLLT obtained with complete pivoting. Since GR is a positive definite matrix complete diag-
onal pivoting is an unnecessary luxury, a very costly one if GR is a sparse matrix! Indeed, for
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sparse GR modern implementations of Cholesky decomposition [16] ignore the values of pivots
and choose their order based entirely on the grounds of preserving sparsity in L. Our setting
of computing (45) is different: we truncate the Cholesky decomposition after producing merely
k (k ≪ m) first columns and we insist on these columns to eliminate k largest pivots from
GR. We accept the fact that for sparse GR the first k columns of L obtained using complete
diagonal pivoting will be much denser than those which would have been computed if ordering
for sparsity had been used.

An important feature of our approach is that partial Cholesky decomposition (45) is computed
using an implicit process in which neither GR nor its Schur complements need to be fully
formulated. Only the diagonal and selected columns of the Schur complements are calculated.

We will precondition (45) with

P =

[
L11

L21 I

] [
DL

DS

] [
LT

11 LT
21

I

]

, (46)

where DS is a diagonal of S. We will first analyse a simplified version of the preconditioner

P0 =

[
L11

L21 I

] [
DL

I

] [
LT

11 LT
21

I

]

, (47)

in which the diagonal of the Schur complement has been replaced with an identity matrix.

Let us order diagonal elements of DL and DS = diag(S) as follows

d1 ≥ d2 ≥ · · · ≥ dk
︸ ︷︷ ︸

DL

≥ dk+1 ≥ dk+2 ≥ · · · ≥ dm
︸ ︷︷ ︸

DS

. (48)

The inequalities are the consequence of complete diagonal pivoting applied when decomposing
GR. We will exploit this ordering to argue that the condition number of the preconditioned
matrix P−1

0 GR is much better than that of GR.

Using the symmetric decomposition P0 = E0E
T
0 , where

E0 =

[
L11

L21 I

] [

D
1/2
L

I

]

(49)

it is easy to derive

E−1
0 GRE−T

0 =

[
I

S

]

. (50)

From Lemma 4.2 we deduce that the smallest eigenvalues of both GR and E−1
0 GRE−T

0 satisfy
(38) and for a special case of LP they are both greater than or equal to δ2, see (40). As the
largest eigenvalues of a positive definite matrix cannot exceed the trace of the matrix, we observe
that

η̃max(GR) ≤ trace(GR) and η̃max(E−1
0 GRE−T

0 ) ≤ k + trace(S).

Our rule of choosing the largest possible pivots when computing partial Cholesky decomposition
corresponds to a greedy heuristic which is likely to reduce the trace of the resulting Schur
complement at the fastest possible rate. Therefore we expect that the condition number of
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E−1
0 GRE−T

0 is decreasing rapidly with an increase of the number of columns k allowed in the
partial Cholesky decomposition. Actually we expect that k + trace(S) ≪ trace(GR).

We have performed our analysis for a simpler preconditioner (47). Similarly we may decompose
P = EET , where

E =

[
L11

L21 I

][

D
1/2
L

D
1/2
S

]

(51)

and observe that

E−1GRE−T =

[

I

D
−1/2
S SD

−1/2
S

]

. (52)

A comparison of (52) and (50) reveals that the difference between P and P0 is an extra Jacobi-
type preconditioner applied to the Schur complement S.

The reduction of augmented system (19) to normal equation (32) makes sense only if matrix
Q+Θ−1 +Rp is easily invertible. This is of course the case if we deal with a linear programming
(Q = 0) or a separable quadratic programming (Q is a diagonal matrix). We can extend the
approach to the case when Q is a band matrix or when Q displays some other sparsity pattern
which leads to a trivially invertible matrix. However, if Q is a general sparse matrix then
its inverse may actually be quite dense [16] and the reduction of augmented system to normal
equation may lead to a serious loss of efficiency. In such case we would not perform the reduction
but work with the augmented system.

To maintain the matrix-free feature of the approach we define Q̄ = diag{Q}+Θ−1+Rp, compute
ḠR = AQ̄−1AT + Rd and its partial Cholesky decomposition

ḠR =

[
L̄11

L̄21 I

] [
D̄L

S̄

] [
L̄T

11 L̄T
21

I

]

. (53)

As before, the off-diagonal elements of the Schur complement S̄ should not be computed because
they are dropped to produce the following approximation of ḠR

P̄ =

[
L̄11

L̄21 I

] [
D̄L

D̄S

] [
L̄T

11 L̄T
21

I

]

= L̄D̄L̄T , (54)

where D̄S is a diagonal of S̄. Finally, we define the preconditioner for the augmented system
(19)

Paug =

[
I

−AQ̄−1 L̄

] [
−Q̄

D̄

] [
I −Q̄−1AT

L̄T

]

. (55)

The computation of such a preconditioner and its application to a vector requires only the mul-
tiplications with the Jacobian matrix and the diagonal of the Hessian matrix and the operations
with the partial Cholesky matrix P̄ . Therefore Paug satisfies the requirements of matrix-free
regime. Obviously, since the augmented system (19) and the preconditioner (55) are indefinite
we cannot use the conjugate gradient algorithm any longer. Instead, we can use for example the
LSQR algorithm of Paige and Saunders [31].

We summarize this section by giving a complete algorithm of the matrix-free interior point
method.
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Matrix-free interior point method

Input

Define: Q̄ = diag{Q} + Θ−1 + Rp and ḠR = AQ̄−1AT + Rd;
matrix-vector operators: u 7→ Au, v 7→ AT v, u 7→ Qu and functions which compute
the diagonal and a single column of ḠR = AQ̄−1AT + Rd: (x, s) 7→ diag{ḠR} and
(x, s) 7→ columnj{ḠR}, respectively.

Parameters

k rank of the partial Cholesky matrix;
maxItKM maximum number of iterations allowed for the Krylov subspace method;

εKM relative accuracy tolerance in the Krylov method: (rq)T rq

(r0)T r0 ≤ εKM ;

εp, εd, εo primal feasibility, dual feasibility and optimality tolerances:

IPM stops when
‖ξl

p‖

1+‖b‖ ≤ εp,
‖ξl

d‖

1+‖c‖ ≤ εd and (xl)T sl/n
1+|cT xl+1/2(xl)T Qxl|

≤ εo.

γ: default primal regularization;
δ: default dual regularization.

Initialize IPM

iteration counter l = 0, primal-dual point x0 > 0, y0 = 0, s0 > 0;
barrier parameter µ0 = (x0)T s0/n;
primal and dual infeasibilities ξ0

p = b − Ax0 and ξ0
d = c − AT y0 − s0 + Qx0.

Interior Point Method

while (
‖ξl

p‖

1+‖b‖ > εp or
‖ξl

d‖
1+‖c‖ > εd or (xl)T sl/n

1+|cT xl+1/2(xl)T Qxl|
> εo ) do

Update (reduce) the barrier µl+1 = 0.1µl;
Define Rp = γ2I, compute Θ = X l(Sl)−1 and Q̄ = diag{Q} + Θ−1 + Rp;
Define proximal points x0 = xl and y0 = yl;
Compute partial Cholesky decomposition of ḠR (53);
Define the preconditioner:

for LP or separable QP use (54);
for nonseparable QP use (55).

Solve the reduced KKT system (19). Use the Krylov subspace method with the
partial Cholesky preconditioner. Terminate when relative accuracy tolerance
drops below εKM or the number of Krylov method iterations reaches the limit
maxItKM.

Find αP = max{α : xl + α∆x ≥ 0} and αD = max{α : sl + α∆s ≥ 0};
Set αP := 0.99αP and αD := 0.99αD ;
Make step

xl+1 = xl + αP ∆x;
yl+1 = yl + αD∆y;
sl+1 = sl + αD∆s.

Compute the infeasibilities: ξl+1
p = b − Axl+1 and ξl+1

d = c − AT yl+1 − sl+1 + Qxl+1;
Update the iteration counter: l := l + 1.

end-while
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The computation of partial Cholesky preconditioner requires access to the diagonal of ḠR =
AQ̄−1AT + Rd and to selected k columns of this matrix. The computation of infeasibilities
ξp and ξd, the right-hand-side vectors in the reduced KKT system (19), and matrix-vector
multiplications in the iterative scheme need to perform numerous matrix-vector multiplications
with matrices A,AT and Q which can all be executed as implicit operations.

The primal-dual Newton direction is computed using multiple centrality correctors [10]. The
use of centrality correctors is not an obvious choice in the implementation which relies on
iterative methods to solve the linear equations because the effort to compute the preconditioner is
relatively small compared to the one needed for every extra backsolve. However, the correctors
help to maintain well-centered iterates and stabilize the behaviour of interior point method.
Therefore one or two centrality correctors are allowed per interior point iteration in the matrix-
free method.

The following default values of parameters are used in our implementation: k = 20, maxItKM =
20, εKM = 10−4, εp = 10−4, εd = 10−4, εo = 10−6. The default primal and dual regularizations
are set to γ2 = 10−8 and δ2 = 10−6, respectively. It is tempting to use stronger default
regularizations γ2 = 10−6 and δ2 = 10−4 to produce a much better conditioned ḠR and
improve the efficiency and accuracy of the preconditioned iterative solver. However, too strong
regularizations might hamper the convergence of the primal dual interior point method.

When the regularized indefinite factorization of (19) is computed in the direct approach [2], both
primal and dual regularizations are defined dynamically. The matrix-free method works with
the normal equation matrix and therefore needs to compute Q̄ = diag{Q} + Θ−1 + Rp before
defining the necessary parts (a diagonal or a column) of ḠR = AQ̄−1AT + Rd. Thus the primal
regularization is always fixed to Rp = γ2I. The dual regularization Rd is defined dynamically
during the computation of the partial Cholesky decomposition of ḠR. For all stable pivots a
default value of Rdi = δ2 is used. However, for pivots which fall dangerously close to zero
(dii ≤ 10−6) a stronger regularization term is applied Rdi = 10−4.

6 Implementation and Numerical Results

The matrix-free interior point method has been implemented in HOPDM [2, 10]. We use an
infeasible primal-dual path following algorithm in which the Newton search directions are com-
puted from the regularized system (19). For linear and separable quadratic problems we reduce
this system to (32) and solve it using the preconditioned conjugate gradient (PCG) algorithm
with the preconditioner (54). For nonseparable quadratic problems we apply Krylov subspace
method directly to the regularized system (19) and precondition it with (55). In most of our
runs the linear systems are solved to a relative accuracy εKM = 10−4, that is, the iterative solver
terminates when the residual in the equation satisfies ‖rq‖2 ≤ εKM‖r0‖2, where rq and r0 are
the residuals at iterations q and zero, respectively. As an additional safeguard against the loss of
efficiency, we interrupt the iterative method after a maximum of maxItKM = 20 steps regardless
of the residual reduction achieved by that time. For nonseparable QPs we used εKM = 10−8

and maxItKM = 100.

Two variants of the preconditioner (46) have been implemented. If A is a sparse matrix then
the preconditioner is computed and stored as a sparse matrix as well, that is, L is stored as
a collection of sparse columns. Due to complete pivoting applied to GR when computing the
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partial Cholesky decomposition the columns of L fill-in very quickly. (The sparsity pattern of
a new column in Cholesky matrix is a result of merging the column of the Schur complement
with all or a subset of Cholesky columns computed earlier.) Therefore we do not expect the
approach to be competitive for sparse problems. The reason for solving a few sparse examples
is to demonstrate the performance of the method on well-known test problems. If A is a dense
matrix or is available only implicitly as an operator providing results of multiplications Au and
AT v then dense partial Cholesky is computed.

An important feature of our approach is that preconditioner P given by (46) and based on
partial Cholesky decomposition is implicit. We do not formulate the matrix GR except for a few
elements of it. The computations start from the diagonal of GR which is easy to calculate when
Q is diagonal or has another easily invertible form. Once the largest pivot in GR is determined
the appropriate column of GR is computed and used to form the first column of L in (45) and to
update the diagonal of GR to become a diagonal DS of the first Schur complement. The largest
element in DS is selected to be the next pivot to enter DL, then the appropriate column of GR

is formed and used to produce the next column in the partial Cholesky matrix L and to update
the diagonal of the Schur complement. The process continues until the predetermined number
k of columns of L are calculated.

To guarantee the efficiency of the approach we keep the rank of L really small. For linear prob-
lems and seperable quadratic problems we set k = 2, 5, 10, 20 or 50 at most. Such low-rank
approximations are not accurate enough to tackle nonseparable quadratic problems. This is
the case because for nonseparable QPs the normal equation matrix GR is approximated with
ḠR in which the matrix Q is already approximated with merely its diagonal. In fact, a low-
rank approximation of the (already approximate) normal equation matrix ḠR is computed. In
consequence we work with approximations of both the (1, 1) block and the Schur complement
of (19) when constructing the preconditioner (55) and the partial Cholesky of small rank is
unable to provide sufficient quality of the preconditioner. For nonseparable quadratic problems
we therefore set k = 50, 100 or 200. Let us observe that the spectral analysis of inexact con-
straint preconditioner [6] applies to (55). It is worth adding however that the inexact constraint
preconditioner [6] offers more flexibility in dropping off-diagonal nonzero entries from Q and
dropping nonzero entries from A and allows to produce more sparse preconditioner than the one
presented in this paper and based on partial Cholesky factorization with complete pivoting.

It is not easy to compare computational complexity of direct and matrix-free approaches for
sparse case because the degree of sparsity and the speed of generating fill-in in partial Cholesky
are difficult to quantify. However we can perform such a comparison for the dense case. We
assume that Q is diagonal (or zero), A ∈ Rm×n is dense, partial Cholesky (45) contains k
columns and the preconditioned conjugate gradient algorithm performs q steps. We report
only dominating terms. Computing the preconditioner would require building a diagonal of
A(Q + Θ−1 + Rp)

−1AT + Rd which involves 2mn floating point operations (flops), building k
columns of this matrix costs kmn flops and computing a trapezoidal L in (45) costs 1

2mk2 flops.
A single PCG iteration needs one multiplication with L,LT and A(Q + Θ−1 + Rp)

−1AT + Rd

so it costs 2mk + 2mn flops. Assuming that q steps of PCG are performed the overall cost of
solving one linear system (32) is

Cost(PCG) = (2 + k + 2q)mn + (
k2

2
+ 2qk)m. (56)

This number should be compared with the cost of a direct approach, which comprises building
full A(Q+Θ−1 +Rp)

−1AT +Rd in 1
2mn2 flops and computing its Cholesky decomposition which
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requires 1
3m3 flops giving the total cost

Cost(Direct) =
1

2
m2n +

1

3
m3. (57)

It is clear that as long as k ≪ m and q ≪ m the matrix-free approach wins the competition.

The storage requirements of the preconditioner are limited to k columns of length m for the
partial Cholesky matrix L and one column of length m to remember the diagonal of the Schur
complement S. It is trivial to determine the maximum rank k of the partial Cholesky decom-
position as a function of memory available for the preconditioner. The limited-memory feature
of our approach is an important advantage which should become essential when solving trully
large problems.

We have performed several tests of the matrix-free interior point method. We have used a Dell
Precision M60 laptop computer with a 2GHz (single core) processor and 2GB of RAM running
Linux. HOPDM was compiled with the GNU Fortran compiler g77 with optimization option
-O2. We have used the same termination criteria for direct and for matrix-free approaches and
set the following tolerances: εp = 10−4, εd = 10−4 and ε0 = 10−6.

We first report the results for sparse test examples coming from Kennington’s collection of net-
work problems osa-07 and osa-14 ( http://www.netlib.org/lp/data/kennington/ ) and set
covering problems from the Italian railroad from Mittelmann’s collection rail507 and rail2586

( http://plato.asu.edu/ftp/lptestset/rail/ ). Tables 1 and 2 are self-explanatory. We
report in them the problem dimensions and the solution statistics, respectively. CPU times in
bold indicate the winner which in all cases is the direct approach. Although matrix-free interior
point method is slower on these problems it is not very far behind the direct approach, which is
encouraging.

Prob Dimensions
rows columns nonzeros

osa-07 1119 23949 167643
osa-14 2338 52460 367220
rail507 507 63009 472358
rail2586 2586 920683 8929459

Table 1: Dimensions of sparse problems.

Prob Direct Matrix-Free IPM

HOPDM rank=10 rank=20 rank=50
iters time iters time iters time iters time

osa-07 11 1.41 17 4.21 15 3.56 15 3.85
osa-14 13 4.71 15 8.50 15 8.66 18 11.84
rail507 15 6.29 16 9.72 16 9.45 17 11.56
rail2586 20 293.23 27 531.39 28 625.54 26 434.97

Table 2: Solution statistics for sparse problems.
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In our second experiment two problems from Netlib ( http://www.netlib.org/lp/data/ )
fit1d and fit2d are solved. These problems are very small for today’s standards. Their
constraint matrices are narrow but long (m ≪ n). Direct approach is obviously very efficient
for these problems having to deal with a sparse Cholesky decomposition of dimension merely 24
or 25. The matrix-free approach delivers comparable performance even with a partial Cholesky
decomposition of rank k = 2 as can be seen in Tables 3 and 4. Since these problems are small
and the timings may be inaccurate we do not indicate the winners with bold print.

Prob Dimensions
rows columns nonzeros

fit1d 24 1026 14430
fit2d 25 10500 138018

Table 3: Dimensions of Netlib problems.

Prob Direct Matrix-Free IPM

HOPDM rank=2 rank=5 rank=10
iters time iters time iters time iters time

fit1d 12 0.06 12 0.10 12 0.10 11 0.08
fit2d 13 1.01 12 1.20 11 1.12 12 1.19

Table 4: Solution statistics for Netlib problems.

In our third experiment, a few nonseparable quadratic programming problems were solved.
We chose problems with significant quadratic term as shown by the number of off-diagonal
nonzero entries in the triangular part of matrix Q reported in the last column of Table 5.
The problems come from the Maros and Mészáros’ collection of quadratic programming test
examples ( http://www.sztaki.hu/~meszaros/public ftp/qpdata/brunel/ ). We needed to
change the default settings of the matrix-free method for these problems. Namely, we allow the
rank of partial Cholesky matrix to vary between 50 and 200. Additionally, we increased the
accuracy requirement of the Krylov subspace solver to εKM = 10−8 and the limit of iterations
to maxItKM = 100. The results collected in Table 6 show that with the rank equal to 50, the
matrix-free method struggled to reach optimal solution for two problems scagr25 and 25fv47

and a higher rank of partial Cholesky preconditioner was required.

Prob Dimensions
rows columns nonzeros A nonzeros Q

scagr25 471 500 2029 100
25fv47 820 1571 11127 59053
ship12l 1151 5427 21597 60205

Table 5: Dimensions of nonseparable QP problems.

Finally, in the fourth experiment we solved randomly generated dense test examples which
attempt to mimic basic pursuit problems [9]. Their dimensions are given in Table 7 and the
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Prob Direct Matrix-Free IPM

HOPDM rank=50 rank=100 rank=200
iters time iters time iters time iters time

scagr25 11 0.04 18 0.44 13 0.36 11 0.18
25fv47 19 1.36 63 10.12 38 9.31 27 11.93
ship12l 9 1.20 10 0.61 10 0.60 10 0.89

Table 6: Solution statistics for nonseparable QP problems.

solution statistics are reported in Table 8. For these problems the matrix-free approach is a
clear winner. We could use a partial Cholesky decomposition preconditioner (46) with a small
rank k = 10, 20 or 50 and we observed the fast convergence of the PCG algorithm. In early IPM
iterations, PCG converged in 5-8 steps, in the “middle” of optimization, PCG usually required
more iterations occasionally matching the limit of 20 steps, and towards the end of optimization,
when IPM approached an optimal solution, the convergence of PCG improved again and the
sufficient reduction of the residual was achieved in 10-15 steps on average.

Prob Dimensions
rows columns nonzeros

Pb1 200 1000 200000
Pb2 500 10000 5000000
Pb3 1000 8000 8000000

Table 7: Dimensions of dense problems.

Prob Direct Matrix-Free IPM

HOPDM rank=10 rank=20 rank=50
iters time iters time iters time iters time

Pb1 5 1.41 5 0.27 6 0.45 5 0.67
Pb2 5 61.77 6 10.02 6 11.58 6 15.87
Pb3 5 201.62 5 13.15 5 11.71 5 20.03

Table 8: Solution statistics for dense problems.

7 Conclusions

We have discussed in this paper the matrix-free implementation of interior point method for
linear and quadratic programming. The method allows for an implicit formulation of the opti-
mization problem in which matrices Q and A do not have to be stored. Instead, they are only
used to compute matrix-vector products. The design of the method relies on the use of iterative
methods to compute Newton directions. The KKT systems are first regularized to guarantee
a bounded condition number and then preconditioned with a partial Cholesky decomposition
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of the normal equation matrix. The preconditioner is computed without explicit use of matri-
ces defining the optimization problem: it needs only matrix-vector products with the problem
matrices. Moreover, the way it is computed easily allows for a limited-memory implementa-
tion. The method has been implemented and the preliminary computational results for small to
medium scale problems demonstrate its feasibility. An implementation for large scale problems
is an ongoing effort and we expect to report on it shortly in another paper.
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