97 research outputs found

    Transcriptional analysis of temporal gene expression in germinating Clostridium difficile 630 endospores.

    Get PDF
    Clostridium difficile is the leading cause of hospital acquired diarrhoea in industrialised countries. Under conditions that are not favourable for growth, the pathogen produces metabolically dormant endospores via asymmetric cell division. These are extremely resistant to both chemical and physical stress and provide the mechanism by which C. difficile can evade the potentially fatal consequences of exposure to heat, oxygen, alcohol, and certain disinfectants. Spores are the primary infective agent and must germinate to allow for vegetative cell growth and toxin production. While spore germination in Bacillus is well understood, little is known about C. difficile germination and outgrowth. Here we use genome-wide transcriptional analysis to elucidate the temporal gene expression patterns in C. difficile 630 endospore germination. We have optimized methods for large scale production and purification of spores. The germination characteristics of purified spores have been characterized and RNA extraction protocols have been optimized. Gene expression was highly dynamic during germination and outgrowth, and was found to involve a large number of genes. Using this genome-wide, microarray approach we have identified 511 genes that are significantly up- or down-regulated during C. difficile germination (p≤0.01). A number of functional groups of genes appeared to be co-regulated. These included transport, protein synthesis and secretion, motility and chemotaxis as well as cell wall biogenesis. These data give insight into how C. difficile re-establishes its metabolism, re-builds the basic structures of the vegetative cell and resumes growth

    Detection of Botulinum Neurotoxin Serotype B at Sub Mouse LD50 Levels by a Sandwich Immunoassay and Its Application to Toxin Detection in Milk

    Get PDF
    Botulinum neurotoxin (BoNT), the causative agent of botulism, a serious neuroparylatic disease, is produced by the anaerobic bacterium Clostridium botulinum and consists of a family of seven serotypes (A-H). We previously reported production of high-affinity monoclonal antibodies to BoNT serotype A.Recombinant peptide fragments of the light chain, the transmembrane and receptor-binding domains of the heavy chain of botulinum neurotoxin type B (BoNT/B) were expressed in Escherichia coli as GST-fusion proteins and purified. These proteins were used to immunize BALB/cJ mice for the generation of monoclonal antibodies (mAbs). Antibody-producing hybridomas were detected using either a direct binding ELISA binding to plate-immobilized BoNT/B, or with a capture-capture ELISA whereby the capacity of the antibody to capture BoNT/B from solution was tested. A total of five mAbs were selected, two of which bound the toxin light chain and three bound the receptor-binding domain of BoNT/B heavy chain. MAb MCS6-27 was identified via capture-capture ELISA and was the only mAb able to bind BoNT/B in solution under physiological conditions. MAbs F24-1, F26-16, F27-33 and F29-40 were identified via direct binding ELISA, and were able to capture BoNT/B in solution only in the presence of 0.5-0.9 mM sodium dodecyl sulphate (SDS). MAb MCS6-27 and an anti-BoNT/B polyclonal antibody were incorporated into a sandwich ELISA that did not require SDS.We report here the generation of monoclonal antibodies to serotype B and the subsequent development of a sensitive sandwich immunoassay. This immunoassay has a detection limit of 100 fg BoNT/B, fifty times more sensitive than the mouse bioassay detection limit of 5 pg BoNT/B. Additionally, this assay detected as little as 39 pg/mL of toxin in skim, 2% and whole milk

    Immune-Mobilizing Monoclonal T Cell Receptors Mediate Specific and Rapid Elimination of Hepatitis B-Infected Cells

    Get PDF
    Background and Aims: Therapies for chronic hepatitis B virus (HBV) infection are urgently needed because of viral integration, persistence of viral antigen expression, inadequate HBV‐specific immune responses, and treatment regimens that require lifelong adherence to suppress the virus. Immune mobilizing monoclonal T Cell receptors against virus (ImmTAV) molecules represent a therapeutic strategy combining an affinity‐enhanced T Cell receptor with an anti‐CD3 T Cell‐activating moiety. This bispecific fusion protein redirects T cells to specifically lyse infected cells expressing the target virus‐derived peptides presented by human leukocyte antigen (HLA). Approach and Results: ImmTAV molecules specific for HLA‐A*02:01‐restricted epitopes from HBV envelope, polymerase, and core antigens were engineered. The ability of ImmTAV‐Env to activate and redirect polyclonal T cells toward cells containing integrated HBV and cells infected with HBV was assessed using cytokine secretion assays and imaging‐based killing assays. Elimination of infected cells was further quantified using a modified fluorescent hybridization of viral RNA assay. Here, we demonstrate that picomolar concentrations of ImmTAV‐Env can redirect T cells from healthy and HBV‐infected donors toward hepatocellular carcinoma (HCC) cells containing integrated HBV DNA resulting in cytokine release, which could be suppressed by the addition of a corticosteroid in vitro. Importantly, ImmTAV‐Env redirection of T cells induced cytolysis of antigen‐positive HCC cells and cells infected with HBV in vitro, causing a reduction of hepatitis B e antigen and specific loss of cells expressing viral RNA. Conclusions: The ImmTAV platform has the potential to enable the elimination of infected cells by redirecting endogenous non‐HBV‐specific T cells, bypassing exhausted HBV‐specific T cells. This represents a promising therapeutic option in the treatment of chronic hepatitis B, with our lead candidate now entering trials

    The peatland map of Europe

    Get PDF
    Based on the ‘European Mires Book’ of the International Mire Conservation Group (IMCG), this article provides a composite map of national datasets as the first comprehensive peatland map for the whole of Europe. We also present estimates of the extent of peatlands and mires in each European country individually and for the entire continent. A minimum peat thickness criterion has not been strictly applied, to allow for (often historically determined) country-specific definitions. Our ‘peatland’ concept includes all ‘mires’, which are peatlands where peat is being formed. The map was constructed by merging national datasets in GIS while maintaining the mapping scales of the original input data. This ‘bottom-up’ approach indicates that the overall area of peatland in Europe is 593,727 km². Mires were found to cover more than 320,000 km² (around 54 % of the total peatland area). If shallow-peat lands (< 30 cm peat) in European Russia are also taken into account, the total peatland area in Europe is more than 1,000,000 km2, which is almost 10 % of the total surface area. Composite inventories of national peatland information, as presented here for Europe, may serve to identify gaps and priority areas for field survey, and help to cross-check and calibrate remote sensing based mapping approaches

    Recent trends in the use of electrical neuromodulation in Parkinson's disease

    Get PDF
    Purpose of Review: This review aims to survey recent trends in electrical forms of neuromodulation, with a specific application to Parkinson’s disease (PD). Emerging trends are identified, highlighting synergies in state-of-the-art neuromodulation strategies, with directions for future improvements in stimulation efficacy suggested. Recent Findings: Deep brain stimulation remains the most common and effective form of electrical stimulation for the treatment of PD. Evidence suggests that transcranial direct current stimulation (tDCS) most likely impacts the motor symptoms of the disease, with the most prominent results relating to rehabilitation. However, utility is limited due to its weak effects and high variability, with medication state a key confound for efficacy level. Recent innovations in transcranial alternating current stimulation (tACS) offer new areas for investigation. Summary: Our understanding of the mechanistic foundations of electrical current stimulation is advancing and as it does so, trends emerge which steer future clinical trials towards greater efficacy

    Sustainability Reporting Playbook

    No full text
    Sustainability reporting can allow internal stakeholders to be more effective in their roles. It can increase employee engagement and inform management decision-making, among other benefits. Yet companies often fail to connect sustainability reporting to the core operations of the business, and so fail to realize the potential benefits. This playbook identifies opportunities for enhancing the effectiveness and impact of sustainability reporting

    Sustainability Reporting to Improve Organizational Performance

    No full text

    Defining Value in Sustainable Business Models

    No full text
    corecore