70 research outputs found

    K-Deep Simplex: Deep Manifold Learning via Local Dictionaries

    Full text link
    We propose K-Deep Simplex (KDS), a unified optimization framework for nonlinear dimensionality reduction that combines the strengths of manifold learning and sparse dictionary learning. Our approach learns local dictionaries that represent a data point with reconstruction coefficients supported on the probability simplex. The dictionaries are learned using algorithm unrolling, an increasingly popular technique for structured deep learning. KDS enjoys tremendous computational advantages over related approaches and is both interpretable and flexible. In particular, KDS is quasilinear in the number of data points with scaling that depends on intrinsic geometric properties of the data. We apply KDS to the unsupervised clustering problem and prove theoretical performance guarantees. Experiments show that the algorithm is highly efficient and performs competitively on synthetic and real data sets.Comment: 14 pages, 6 figure

    The role of leadership in people-centred health systems: a sub-national study in The Gambia

    Get PDF
    Recently, increasing attention has been given to behavioural and relational aspects of the people who both define and shape health systems, placing them at the core. A growing refrain includes the assertion that important decisions determining health system performance, including agenda setting, policy formulation and policy implementation, are made by people. Within this actor-oriented approach, good leadership has been identified as a key contributing factor in health systems strengthening. However, leadership remains ill-defined and under-researched, especially in resource-limited settings, and understanding the links between leadership and health outcomes remains a challenge. We explore the concept and practice of healthcare leadership at sub-national level in a low-income country setting, using a people-centric research methodology. In June and July 2013, 15 in-depth interviews were conducted with key informants in formal healthcare leadership roles across urban, peri-urban and rural settings of The Gambia, West Africa. Participants included the entire spectrum of Regional Health Team (RHT) Directors and Chief Executive Officers of all government hospitals, as well as one clinical officer-in-charge in a secondary-level major health centre. We found reference to several important aspects of, and approaches to, leadership, including (i) setting a clear vision; (ii) engendering shared leadership; and (iii) paying attention to human relations in management. Participants described attending to constituencies in government, international development agencies and civil society, as well as to the populations they serve. By illuminating the multi-polar networks within which these leaders are embedded, and through which they operate, we provide insight into the complex ‘organizational ecology’ of the Gambian health system. There is a need to further research and develop healthcare leadership across all levels, within various political, socio-economic and cultural contexts, in order to better work with a range of health actors and to engage them in identifying and acting upon opportunities for health systems strengthening

    The influence of the thickness of the Cds emitter layer on the performance of a CIGS solar cell with acceptor defects

    Full text link
    In this work, we simulated a solar cell based on CIGS with simple default acceptor, using software (SCAPS) version 3.302 in order to study certain parameters. In particular, we have varied the thickness of the CdS emitter (0.05 mum, 0.04 mum and 0.03 mum) to study its influence on the performance of the cell. We were able to record that the energy efficiency increased from 16.50% for a thickness of 0.05 mum of the emitter to 16.87% for a thickness of 0.03 mum of the emitter. We also noted an improvement in other parameters, such as the form factor from FF = 79.81% to 80.10%, with the decrease in the thickness of the CdS. And from the Nyquist diagram, we also determined parameters like the series resistance to get an idea on the equivalent electrical circuit of the studied cell

    An African Approach for Risk Reduction of Soil Contaminated by Obsolete Pesticides

    Get PDF
    Since the 1950s, large amounts of pesticides were shipped to Africa for locust control, but did not arrive at the proper place or proper time thereby rendering them obsolete. Stockpiles of these pesticides have created a serious problem and The Africa Stockpiles Programme (ASP), launched by FAO, is designed to rid Africa of stockpiles and to dispose of them in an environmentally sound manner (ASP, 2009). From July to August 2007, an investigation mission was organized by FAO pesticide management programme, in collaboration with Wageningen University and Research Centre and the relevant national counterpart institutions of the Ministries of Agriculture and the Ministries of Environment in Mali and Mauritania. During the investigation, three sites in Mali and three sites in Mauretania were visited in the summer of 2007. High concentrations of pesticides were found in soils on the stockpiles. From a riskbased point of view, contaminations are only a risk if they are or may become available. Based on the results obtained and results of analysis of the samples taken, risk reduction proposals have been developed. All proposals are based on stimulation of the possibilities of biological degradation of the pesticides in combination with isolation and preventing rain water from transporting the pesticides. The results were discussed in May 2008 and the first implementation was started in Molodo (Mali) in July 2008

    Prevalence of Mutations in the \u3ci\u3ePfdhfr\u3c/i\u3e, \u3ci\u3ePfdhps\u3c/i\u3e, and \u3ci\u3ePfmdr1\u3c/i\u3e Genes of Malarial Parasites Isolated from Symptomatic Patients in Dogondoutchi, Niger

    Get PDF
    The effectiveness of artemisinin-based combination therapies (ACTs) depends not only on that of artemisinin but also on that of partner molecules. This study aims to evaluate the prevalence of mutations in the Pfdhfr, Pfdhps, and Pfmdr1 genes from isolates collected during a clinical study. Plasmodium genomic DNA samples extracted from symptomatic malaria patients from Dogondoutchi, Niger, were sequenced by the Sanger method to determine mutations in the Pfdhfr (codons 51, 59, 108, and 164), Pfdhps (codons 436, 437, 540, 581, and 613), and Pfmdr1 (codons 86, 184, 1034, and 1246) genes. One hundred fifty-five (155) pre-treatment samples were sequenced for the Pfdhfr, Pfdhps, and Pfmdr1 genes. A high prevalence of mutations in the Pfdhfr gene was observed at the level of the N51I (84.97%), C59R (92.62%), and S108N (97.39%) codons. The key K540E mutation in the Pfdhps gene was not observed. Only one isolate was found to harbor a mutation at codon I431V. The most common mutation on the Pfmdr1 gene was Y184F in 71.43% of the mutations found, followed by N86Y in 10.20%. The triple-mutant haplotype N51I/C59R/S108N (IRN) was detected in 97% of the samples. Single-mutant (ICS and NCN) and double-mutant (IRS, NRN, and ICN) haplotypes were prevalent at 97% and 95%, respectively. Double-mutant haplotypes of the Pfdhps (581 and 613) and Pfmdr (86 and 184) were found in 3% and 25.45% of the isolates studied, respectively. The study focused on the molecular analysis of the sequencing of the Pfdhfr, Pfdhps, and Pfmdr1 genes. Although a high prevalence of mutations in the Pfdhfr gene have been observed, there is a lack of sulfadoxine pyrimethamine resistance. There is a high prevalence of mutation in the Pfmdr184 codon associated with resistance to amodiaquine. These data will be used by Niger’s National Malaria Control Program to better monitor the resistance of Plasmodium to partner molecules in artemisinin-based combination therapies

    Size and Shape Constraints of (486958) Arrokoth from Stellar Occultations

    Get PDF
    We present the results from four stellar occultations by (486958) Arrokoth, the flyby target of the New Horizons extended mission. Three of the four efforts led to positive detections of the body, and all constrained the presence of rings and other debris, finding none. Twenty-five mobile stations were deployed for 2017 June 3 and augmented by fixed telescopes. There were no positive detections from this effort. The event on 2017 July 10 was observed by the Stratospheric Observatory for Infrared Astronomy with one very short chord. Twenty-four deployed stations on 2017 July 17 resulted in five chords that clearly showed a complicated shape consistent with a contact binary with rough dimensions of 20 by 30 km for the overall outline. A visible albedo of 10% was derived from these data. Twenty-two systems were deployed for the fourth event on 2018 August 4 and resulted in two chords. The combination of the occultation data and the flyby results provides a significant refinement of the rotation period, now estimated to be 15.9380 ± 0.0005 hr. The occultation data also provided high-precision astrometric constraints on the position of the object that were crucial for supporting the navigation for the New Horizons flyby. This work demonstrates an effective method for obtaining detailed size and shape information and probing for rings and dust on distant Kuiper Belt objects as well as being an important source of positional data that can aid in spacecraft navigation that is particularly useful for small and distant bodies.Fil: Buie, Marc W.. Southwest Research Institute.; Estados UnidosFil: Porter, Simon B.. Southwest Research Institute.; Estados UnidosFil: Tamblyn, Peter. Southwest Research Institute.; Estados UnidosFil: Terrell, Dirk. Southwest Research Institute.; Estados UnidosFil: Parker, Alex Harrison. Southwest Research Institute.; Estados UnidosFil: Baratoux, David. Géosciences Environnement Toulouse; Francia. Centre National de la Recherche Scientifique; FranciaFil: Kaire, Maram. Ministry of Higher Education Research and Innovation; Senegal. Asociación Senegalesa para la Promoción de la Astronomía; SenegalFil: Leiva, Rodrigo. Southwest Research Institute.; Estados UnidosFil: Verbiscer, Anne J.. University of Virginia; Estados UnidosFil: Zangari, Amanda M.. Southwest Research Institute.; Estados UnidosFil: Colas, François. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia. Sorbonne University; Francia. Centre National de la Recherche Scientifique; FranciaFil: Diop, Baidy Demba. Direction de la Formation et de la Communication; SenegalFil: Samaniego, Joseph I.. University of Colorado; Estados UnidosFil: Wasserman, Lawrence H.. Lowell Observatory; Estados UnidosFil: Benecchi, Susan D.. Planetary Science Institute; Estados UnidosFil: Caspi, Amir. Southwest Research Institute.; Estados UnidosFil: Gwyn, Stephen. Herzberg Astronomy and Astrophysics Research Centre; CanadáFil: Kavelaars, J. J.. Herzberg Astronomy and Astrophysics Research Centre; CanadáFil: Ocampo Uría, Adriana C.. National Aeronautics and Space Administration; Estados UnidosFil: Rabassa, Jorge Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Skrutskie, M. F.. University of Virginia; Estados UnidosFil: Soto, Alejandro. Southwest Research Institute.; Estados UnidosFil: Tanga, Paolo. Université Côte d’Azur; Francia. Centre National de la Recherche Scientifique; FranciaFil: Young, Eliot F.. Southwest Research Institute.; Estados UnidosFil: Stern, S. Alan. Southwest Research Institute.; Estados UnidosFil: Andersen, Bridget C.. University of Virginia; Estados UnidosFil: Arango Pérez, Mauricio E.. Universidad de Antioquia; ColombiaFil: Arredondo, Anicia. Massachusetts Institute of Technology; Estados UnidosFil: Artola, Rodolfo Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: García Migani, Esteban Andrés. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Geofísica y Astronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentin
    corecore