1,288 research outputs found
New planetary and EB candidates from Campaigns 1-6 of the K2 mission
With only two functional reaction wheels, Kepler cannot maintain stable
pointing at its original target field and entered a new mode of observation
called K2. Our method is based on many years of experience in planet hunting
for the CoRoT mission. Due to the unstable pointing, K2 light curves present
systematics that are correlated with the target position in the CCD. Therefore,
our pipeline also includes a decorrelation of this systematic noise. Our
pipeline is optimised for bright stars for which spectroscopic follow-up is
possible. We achieve a maximum precision on 6 hours of 6 ppm. The decorrelated
light curves are searched for transits with an adapted version of the CoRoT
alarm pipeline. We present 172 planetary candidates and 327 eclipsing binary
candidates from campaigns 1, 2, 3, 4, 5 and 6 of K2. Both the planetary
candidates and eclipsing binary candidates lists are made public to promote
follow-up studies. The light curves will also be available to the community.Comment: 22 pages. 5 figures, 4 tables, Accepted for publication in A&
The orbital phases and secondary transit of Kepler-10b - A physical interpretation based on the Lava-ocean planet model -
The Kepler mission has made an important observation, the first detection of
photons from a terrestrial planet by observing its phase curve (Kepler-10b).
This opens a new field in exoplanet science: the possibility to get information
about the atmosphere and surface of rocky planets, objects of prime interest.
In this letter, we apply the Lava-ocean model to interpret the observed phase
curve. The model, a planet with no atmosphere and a surface partially made of
molten rocks, has been proposed for planets of the class of CoRoT-7b, i.e.
rocky planets very close to their star (at few stellar radii). Kepler-10b is a
typical member of this family. It predicts that the light from the planet has
an important emission component in addition to the reflected one, even in the
Kepler spectral band. Assuming an isotropical reflection of light by the
planetary surface (Lambertian-like approximation), we find that a Bond albedo
of \sim50% can account for the observed amplitude of the phase curve, as
opposed to a first attempt where an unusually high value was found. We propose
a physical process to explain this still large value of the albedo. The overall
interpretation can be tested in the future with instruments as JWST or EChO.
Our model predicts a spectral dependence that is clearly distinguishable from
that of purely reflected light, and from that of a planet at a uniform
temperature.Comment: Accepted in ApJ Letters, 17 pages, 3 figure
Embedding Session Types in HML
Recent work on the enhancement of multiparty session types with logical annotations enable the effective verification of properties on (1) the structure of the conversations, (2) the sorts of the messages, and (3) the actual values exchanged. In [3] we extend this work to enable the specification and verification of mutual effects of multiple cross-session interactions. Here we give a sound and complete embedding into the Hennessy-Milner logic to justify the expressiveness of the approach in [3] and to provide it with a logical background that will enable us to compare it with similar approaches
ARCHI: pipeline for light curve extraction of CHEOPS background star
High precision time series photometry from space is being used for a number
of scientific cases. In this context, the recently launched CHEOPS (ESA)
mission promises to bring 20 ppm precision over an exposure time of 6 hours,
when targeting nearby bright stars, having in mind the detailed
characterization of exoplanetary systems through transit measurements. However,
the official CHEOPS (ESA) mission pipeline only provides photometry for the
main target (the central star in the field). In order to explore the potential
of CHEOPS photometry for all stars in the field, in this paper we present
archi, an additional open-source pipeline module{\dag}to analyse the background
stars present in the image. As archi uses the official Data Reduction Pipeline
data as input, it is not meant to be used as independent tool to process raw
CHEOPS data but, instead, to be used as an add-on to the official pipeline. We
test archi using CHEOPS simulated images, and show that photometry of
background stars in CHEOPS images is only slightly degraded (by a factor of 2
to 3) with respect to the main target. This opens a potential for the use of
CHEOPS to produce photometric time series of several close-by targets at once,
as well as to use different stars in the image to calibrate systematic errors.
We also show one clear scientific application where the study of the companion
light curve can be important for the understanding of the contamination on the
main target.Comment: 14 pages, 13 figures, accepted for publication in MNRAS, all code
available at https://github.com/Kamuish/arch
Constraining planet structure and composition from stellar chemistry: trends in different stellar populations
The chemical composition of stars that have orbiting planets provides
important clues about the frequency, architecture, and composition of exoplanet
systems. We explore the possibility that stars from different galactic
populations that have different intrinsic abundance ratios may produce planets
with a different overall composition. We compiled abundances for Fe, O, C, Mg,
and Si in a large sample of solar neighbourhood stars that belong to different
galactic populations. We then used a simple stoichiometric model to predict the
expected iron-to-silicate mass fraction and water mass fraction of the planet
building blocks, as well as the summed mass percentage of all heavy elements in
the disc. Assuming that overall the chemical composition of the planet building
blocks will be reflected in the composition of the formed planets, we show that
according to our model, discs around stars from different galactic populations,
as well as around stars from different regions in the Galaxy, are expected to
form rocky planets with significantly different iron-to-silicate mass
fractions. The available water mass fraction also changes significantly from
one galactic population to another. The results may be used to set constraints
for models of planet formation and chemical composition. Furthermore, the
results may have impact on our understanding of the frequency of planets in the
Galaxy, as well as on the existence of conditions for habitability.Comment: Accepted for publication in Astronomy & Astrophysic
Monitoring Networks through Multiparty Session Types
In large-scale distributed infrastructures, applications are realised through communications among distributed components. The need for methods for assuring safe interactions in such environments is recognised, however the existing frameworks, relying on centralised verification or restricted specification methods, have limited applicability. This paper proposes a new theory of monitored π-calculus with dynamic usage of multiparty session types (MPST), offering a rigorous foundation for safety assurance of distributed components which asynchronously communicate through multiparty sessions. Our theory establishes a framework for semantically precise decentralised run-time enforcement and provides reasoning principles over monitored distributed applications, which complement existing static analysis techniques. We introduce asynchrony through the means of explicit routers and global queues, and propose novel equivalences between networks, that capture the notion of interface equivalence, i.e. equating networks offering the same services to a user. We illustrate our static–dynamic analysis system with an ATM protocol as a running example and justify our theory with results: satisfaction equivalence, local/global safety and transparency, and session fidelity
Monitoring Networks through Multiparty Session Types
In large-scale distributed infrastructures, applications are realised through communications among distributed components. The need for methods for assuring safe interactions in such environments is recognized, however the existing frameworks, relying on centralised verification or restricted specification methods, have limited applicability. This paper proposes a new theory of monitored π-calculus with dynamic usage of multiparty session types (MPST), offering a rigorous foundation for safety assurance of distributed components which asynchronously communicate through multiparty sessions. Our theory establishes a framework for semantically precise decentralised run-time enforcement and provides reasoning principles over monitored distributed applications, which complement existing static analysis techniques. We introduce asynchrony through the means of explicit routers and global queues, and propose novel equivalences between networks, that capture the notion of interface equivalence, i.e. equating networks offering the same services to a user. We illustrate our static-dynamic analysis system with an ATM protocol as a running example and justify our theory with results: satisfaction equivalence, local/global safety and transparency, and session fidelity
Distinguishing the albedo of exoplanets from stellar activity
Light curves show the flux variation from the target star and its orbiting
planets as a function of time. In addition to the transit features created by
the planets, the flux also includes the reflected light component of each
planet, which depends on the planetary albedo. This signal is typically
referred to as phase curve and could be easily identified if there were no
additional noise. As well as instrumental noise, stellar activity, such as
spots, can create a modulation in the data, which may be very difficult to
distinguish from the planetary signal. We analyze the limitations imposed by
the stellar activity on the detection of the planetary albedo, considering the
limitations imposed by the predicted level of instrumental noise and the short
duration of the observations planned in the context of the CHEOPS mission. As
initial condition, we have assumed that each star is characterized by just one
orbiting planet. We built mock light curves that included a realistic stellar
activity pattern, the reflected light component of the planet and an
instrumental noise level, which we have chosen to be at the same level as
predicted for CHEOPS. We then fit these light curves to try to recover the
reflected light component, assuming the activity patterns can be modeled with a
Gaussian process.We estimate that at least one full stellar rotation is
necessary to obtain a reliable detection of the planetary albedo. This result
is independent of the level of noise, but it depends on the limitation of the
Gaussian process to describe the stellar activity when the light curve
time-span is shorter than the stellar rotation. Finally, in presence of typical
CHEOPS gaps in the simulations, we confirm that it is still possible to obtain
a reliable albedo.Comment: Accepted for publication in A&A, 14 pages, 12 figure
Understanding stellar activity-induced radial velocity jitter using simultaneous K2 photometry and HARPS RV measurements
One of the best ways to improve our understanding of the stellar
activity-induced signal in radial velocity (RV) measurements is through
simultaneous high-precision photometric and RV observations. This is of prime
importance to mitigate the RV signal induced by stellar activity and therefore
unveil the presence of low-mass exoplanets. The K2 Campaign 7 and 8
field-of-views were located in the southern hemisphere, and provided a unique
opportunity to gather unprecedented simultaneous high precision photometric
observation with K2 and high-precision RV measurements with the HARPS
spectrograph to study the relationship between photometric variability and RV
jitter. We observed nine stars with different levels of activity; from quiet to
very active. We probe the presence of any meaningful relation between measured
RV jitter and the simultaneous photometric variation, and also other activity
indicators (e.g. BIS, FWHM, , and F8), by evaluating the strength
and significance of the correlation between RVs and each indicator. We found
that for the case of very active stars, strong and significant correlations
exist between almost all the observables and measured RVs; however, for lower
activity levels the correlations become random. Except for the F8 which its
strong correlation with RV jitter persists over a wide range of stellar
activity level, and thus our result suggests that F8 might be a powerful proxy
for activity induced RV jitter. Moreover, we examine the capability of two
state-of-the-art modeling techniques, namely the FF' method and SOAP2.0, in
accurately predicting the RV jitter amplitude using the simultaneous
photometric observation. We found that for the very active stars both
techniques can reasonably well predict the amplitude of the RV jitter, however,
at lower activity levels the FF' method underpredicts the RV jitter amplitude.Comment: 13 pages, 7 figures, 2 tables, accepted for publication in A&
Explicit connection actions in multiparty session types
This work extends asynchronous multiparty session types (MPST) with explicit connection actions to support protocols with op- tional and dynamic participants. The actions by which endpoints are connected and disconnected are a key element of real-world protocols that is not treated in existing MPST works. In addition, the use cases motivating explicit connections often require a more relaxed form of mul- tiparty choice: these extensions do not satisfy the conservative restric- tions used to ensure safety in standard syntactic MPST. Instead, we de- velop a modelling-based approach to validate MPST safety and progress for these enriched protocols. We present a toolchain implementation, for distributed programming based on our extended MPST in Java, and a core formalism, demonstrating the soundness of our approach. We discuss key implementation issues related to the proposed extensions: a practi- cal treatment of choice subtyping for MPST progress, and multiparty correlation of dynamic binary connections
- …
