1,288 research outputs found

    New planetary and EB candidates from Campaigns 1-6 of the K2 mission

    Full text link
    With only two functional reaction wheels, Kepler cannot maintain stable pointing at its original target field and entered a new mode of observation called K2. Our method is based on many years of experience in planet hunting for the CoRoT mission. Due to the unstable pointing, K2 light curves present systematics that are correlated with the target position in the CCD. Therefore, our pipeline also includes a decorrelation of this systematic noise. Our pipeline is optimised for bright stars for which spectroscopic follow-up is possible. We achieve a maximum precision on 6 hours of 6 ppm. The decorrelated light curves are searched for transits with an adapted version of the CoRoT alarm pipeline. We present 172 planetary candidates and 327 eclipsing binary candidates from campaigns 1, 2, 3, 4, 5 and 6 of K2. Both the planetary candidates and eclipsing binary candidates lists are made public to promote follow-up studies. The light curves will also be available to the community.Comment: 22 pages. 5 figures, 4 tables, Accepted for publication in A&

    The orbital phases and secondary transit of Kepler-10b - A physical interpretation based on the Lava-ocean planet model -

    Full text link
    The Kepler mission has made an important observation, the first detection of photons from a terrestrial planet by observing its phase curve (Kepler-10b). This opens a new field in exoplanet science: the possibility to get information about the atmosphere and surface of rocky planets, objects of prime interest. In this letter, we apply the Lava-ocean model to interpret the observed phase curve. The model, a planet with no atmosphere and a surface partially made of molten rocks, has been proposed for planets of the class of CoRoT-7b, i.e. rocky planets very close to their star (at few stellar radii). Kepler-10b is a typical member of this family. It predicts that the light from the planet has an important emission component in addition to the reflected one, even in the Kepler spectral band. Assuming an isotropical reflection of light by the planetary surface (Lambertian-like approximation), we find that a Bond albedo of \sim50% can account for the observed amplitude of the phase curve, as opposed to a first attempt where an unusually high value was found. We propose a physical process to explain this still large value of the albedo. The overall interpretation can be tested in the future with instruments as JWST or EChO. Our model predicts a spectral dependence that is clearly distinguishable from that of purely reflected light, and from that of a planet at a uniform temperature.Comment: Accepted in ApJ Letters, 17 pages, 3 figure

    Embedding Session Types in HML

    Get PDF
    Recent work on the enhancement of multiparty session types with logical annotations enable the effective verification of properties on (1) the structure of the conversations, (2) the sorts of the messages, and (3) the actual values exchanged. In [3] we extend this work to enable the specification and verification of mutual effects of multiple cross-session interactions. Here we give a sound and complete embedding into the Hennessy-Milner logic to justify the expressiveness of the approach in [3] and to provide it with a logical background that will enable us to compare it with similar approaches

    ARCHI: pipeline for light curve extraction of CHEOPS background star

    Full text link
    High precision time series photometry from space is being used for a number of scientific cases. In this context, the recently launched CHEOPS (ESA) mission promises to bring 20 ppm precision over an exposure time of 6 hours, when targeting nearby bright stars, having in mind the detailed characterization of exoplanetary systems through transit measurements. However, the official CHEOPS (ESA) mission pipeline only provides photometry for the main target (the central star in the field). In order to explore the potential of CHEOPS photometry for all stars in the field, in this paper we present archi, an additional open-source pipeline module{\dag}to analyse the background stars present in the image. As archi uses the official Data Reduction Pipeline data as input, it is not meant to be used as independent tool to process raw CHEOPS data but, instead, to be used as an add-on to the official pipeline. We test archi using CHEOPS simulated images, and show that photometry of background stars in CHEOPS images is only slightly degraded (by a factor of 2 to 3) with respect to the main target. This opens a potential for the use of CHEOPS to produce photometric time series of several close-by targets at once, as well as to use different stars in the image to calibrate systematic errors. We also show one clear scientific application where the study of the companion light curve can be important for the understanding of the contamination on the main target.Comment: 14 pages, 13 figures, accepted for publication in MNRAS, all code available at https://github.com/Kamuish/arch

    Constraining planet structure and composition from stellar chemistry: trends in different stellar populations

    Get PDF
    The chemical composition of stars that have orbiting planets provides important clues about the frequency, architecture, and composition of exoplanet systems. We explore the possibility that stars from different galactic populations that have different intrinsic abundance ratios may produce planets with a different overall composition. We compiled abundances for Fe, O, C, Mg, and Si in a large sample of solar neighbourhood stars that belong to different galactic populations. We then used a simple stoichiometric model to predict the expected iron-to-silicate mass fraction and water mass fraction of the planet building blocks, as well as the summed mass percentage of all heavy elements in the disc. Assuming that overall the chemical composition of the planet building blocks will be reflected in the composition of the formed planets, we show that according to our model, discs around stars from different galactic populations, as well as around stars from different regions in the Galaxy, are expected to form rocky planets with significantly different iron-to-silicate mass fractions. The available water mass fraction also changes significantly from one galactic population to another. The results may be used to set constraints for models of planet formation and chemical composition. Furthermore, the results may have impact on our understanding of the frequency of planets in the Galaxy, as well as on the existence of conditions for habitability.Comment: Accepted for publication in Astronomy & Astrophysic

    Monitoring Networks through Multiparty Session Types

    Get PDF
    In large-scale distributed infrastructures, applications are realised through communications among distributed components. The need for methods for assuring safe interactions in such environments is recognised, however the existing frameworks, relying on centralised verification or restricted specification methods, have limited applicability. This paper proposes a new theory of monitored π-calculus with dynamic usage of multiparty session types (MPST), offering a rigorous foundation for safety assurance of distributed components which asynchronously communicate through multiparty sessions. Our theory establishes a framework for semantically precise decentralised run-time enforcement and provides reasoning principles over monitored distributed applications, which complement existing static analysis techniques. We introduce asynchrony through the means of explicit routers and global queues, and propose novel equivalences between networks, that capture the notion of interface equivalence, i.e. equating networks offering the same services to a user. We illustrate our static–dynamic analysis system with an ATM protocol as a running example and justify our theory with results: satisfaction equivalence, local/global safety and transparency, and session fidelity

    Monitoring Networks through Multiparty Session Types

    Get PDF
    In large-scale distributed infrastructures, applications are realised through communications among distributed components. The need for methods for assuring safe interactions in such environments is recognized, however the existing frameworks, relying on centralised verification or restricted specification methods, have limited applicability. This paper proposes a new theory of monitored π-calculus with dynamic usage of multiparty session types (MPST), offering a rigorous foundation for safety assurance of distributed components which asynchronously communicate through multiparty sessions. Our theory establishes a framework for semantically precise decentralised run-time enforcement and provides reasoning principles over monitored distributed applications, which complement existing static analysis techniques. We introduce asynchrony through the means of explicit routers and global queues, and propose novel equivalences between networks, that capture the notion of interface equivalence, i.e. equating networks offering the same services to a user. We illustrate our static-dynamic analysis system with an ATM protocol as a running example and justify our theory with results: satisfaction equivalence, local/global safety and transparency, and session fidelity

    Distinguishing the albedo of exoplanets from stellar activity

    Full text link
    Light curves show the flux variation from the target star and its orbiting planets as a function of time. In addition to the transit features created by the planets, the flux also includes the reflected light component of each planet, which depends on the planetary albedo. This signal is typically referred to as phase curve and could be easily identified if there were no additional noise. As well as instrumental noise, stellar activity, such as spots, can create a modulation in the data, which may be very difficult to distinguish from the planetary signal. We analyze the limitations imposed by the stellar activity on the detection of the planetary albedo, considering the limitations imposed by the predicted level of instrumental noise and the short duration of the observations planned in the context of the CHEOPS mission. As initial condition, we have assumed that each star is characterized by just one orbiting planet. We built mock light curves that included a realistic stellar activity pattern, the reflected light component of the planet and an instrumental noise level, which we have chosen to be at the same level as predicted for CHEOPS. We then fit these light curves to try to recover the reflected light component, assuming the activity patterns can be modeled with a Gaussian process.We estimate that at least one full stellar rotation is necessary to obtain a reliable detection of the planetary albedo. This result is independent of the level of noise, but it depends on the limitation of the Gaussian process to describe the stellar activity when the light curve time-span is shorter than the stellar rotation. Finally, in presence of typical CHEOPS gaps in the simulations, we confirm that it is still possible to obtain a reliable albedo.Comment: Accepted for publication in A&A, 14 pages, 12 figure

    Understanding stellar activity-induced radial velocity jitter using simultaneous K2 photometry and HARPS RV measurements

    Get PDF
    One of the best ways to improve our understanding of the stellar activity-induced signal in radial velocity (RV) measurements is through simultaneous high-precision photometric and RV observations. This is of prime importance to mitigate the RV signal induced by stellar activity and therefore unveil the presence of low-mass exoplanets. The K2 Campaign 7 and 8 field-of-views were located in the southern hemisphere, and provided a unique opportunity to gather unprecedented simultaneous high precision photometric observation with K2 and high-precision RV measurements with the HARPS spectrograph to study the relationship between photometric variability and RV jitter. We observed nine stars with different levels of activity; from quiet to very active. We probe the presence of any meaningful relation between measured RV jitter and the simultaneous photometric variation, and also other activity indicators (e.g. BIS, FWHM, logRHKlogR'_{HK}, and F8), by evaluating the strength and significance of the correlation between RVs and each indicator. We found that for the case of very active stars, strong and significant correlations exist between almost all the observables and measured RVs; however, for lower activity levels the correlations become random. Except for the F8 which its strong correlation with RV jitter persists over a wide range of stellar activity level, and thus our result suggests that F8 might be a powerful proxy for activity induced RV jitter. Moreover, we examine the capability of two state-of-the-art modeling techniques, namely the FF' method and SOAP2.0, in accurately predicting the RV jitter amplitude using the simultaneous photometric observation. We found that for the very active stars both techniques can reasonably well predict the amplitude of the RV jitter, however, at lower activity levels the FF' method underpredicts the RV jitter amplitude.Comment: 13 pages, 7 figures, 2 tables, accepted for publication in A&

    Explicit connection actions in multiparty session types

    Get PDF
    This work extends asynchronous multiparty session types (MPST) with explicit connection actions to support protocols with op- tional and dynamic participants. The actions by which endpoints are connected and disconnected are a key element of real-world protocols that is not treated in existing MPST works. In addition, the use cases motivating explicit connections often require a more relaxed form of mul- tiparty choice: these extensions do not satisfy the conservative restric- tions used to ensure safety in standard syntactic MPST. Instead, we de- velop a modelling-based approach to validate MPST safety and progress for these enriched protocols. We present a toolchain implementation, for distributed programming based on our extended MPST in Java, and a core formalism, demonstrating the soundness of our approach. We discuss key implementation issues related to the proposed extensions: a practi- cal treatment of choice subtyping for MPST progress, and multiparty correlation of dynamic binary connections
    corecore