View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Kent Academic Repository

Embedding Session Types in HML

Romain Demangeon' and Laura Bocchi?*

Queen Mary, University of London
romaind@eecs.gmul.ac.uk
University of Leicester
1bl48@mcs.le.ac.uk

Abstract. Recent work on the enhancement of multiparty session types with logical
annotations enable the effective verification of properties on (1) the structure of the
conversations, (2) the sorts of the messages, and (3) the actual values exchanged. In [2]
we extend this work to enable the specification and verification of mutual effects of
multiple cross-session interactions. Here we give a sound and complete embedding into
the Hennessy-Milner logic to justify the expressiveness of the approach in [2] and to
provide it with a logical background that will enable us to compare it with similar ap-
proaches.

1 Introduction

The Hennessy-Milner Logic (HML) is an expressive modal logic with a strong seman-
tic characterisation [6] that enables the specification of arbitrary behavioural properties
of processes. Recent work on the enhancement of multiparty session types with logi-
cal annotations [2, 3] addressed key challenges for logical specifications of processes,
which were unexplored in the context of HML, such as the tractability of specifications
of multiparty choreographies.

The work in [2, 3] is based on multiparty session types [3,4,7] and inherits the
same top-down approach.The key idea is that conversations are built as the composition
of units of design called sessions which are specified from a global perspective (i.e.,
a global type). Each global type is then projected, making the responsibilities of each
endpoint explicit. This approach enables: (1) the effective verification of properties such
as session fidelity, progress, and error freedom, and (2) the modular local verification
(i.e., of each principal) of global properties of multiparty interactions.

The direct use of HML for the same purpose would require to start from endpoint
specifications and then to check their mutual consistency, hence would not offer the
same tractability. Starting from global assertions, instead, results in significant conci-
sion, while still enjoying generality in the modelling and verification of choreographies.

By enhancing multiparty session types with logical annotations, [3] enables the ef-
fective verification of properties on the actual values exchanged, other than the proper-
ties on the sorts of the messages guaranteed by [4, 7]. For instance, global type G in (1)
describes, following a similar syntax to [4], a conversation where role S sends role C an
integer and then continues as specified by global type G’. Following [3], assertion G in
(1) can be obtained by annotating global type G assertion G further prescribes that the

*This work has been partially sponsored by the project Leverhulme Trust award “Tracing Networks”.

https://core.ac.uk/display/30704938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

exchanged value, say y, must be greater than 10. Note that y is bound in G’ and the fact
{y > 10} can be relied on in the subsequent interactions.

G =85 —C:(int).G’ G=8—C:(y:int){y > 10}.¢' (1)

In [2] we extended [3] with the capability to refer to virtual states local to each
network principal, hence expressing not only properties confined to the single multi-
party sessions, but also stateful specifications incorporating mutual effects of multiple
sessions run by a principal.

S — C: (y:int){y > 10 A y = S.x}{S.x++) 2)

Consider now the protocol in (2). The description of this simple distributed applica-
tion implies behavioural constraints of greater depth than the basic communication ac-
tions. The (sender-side) predicate and effect for the interaction step, {y > 10 A y =
S.x}{S.x++), asserts that the message y sent to each client must equal the current value
of S.x, a state variable z allocated to the principal serving as S; and that the local effect
of this message send is to increment S.x. In this way, S is specified to send incremental
values across consecutive sessions. The resulting global specifications are called multi-
party stateful assertions (MPSAs), and model the skeletal structure of the interactions
of a session, the constraints on the exchanged messages and on the branches to be fol-
lowed, and the effects of each interaction on the virtual state.

In order to obtain a clear understanding of the status of the logical methodology
proposed in [2], it is useful to relate its notion of assertions to a more standard approach
in process logic. This would enable us to integrate different methods catering for differ-
ent concerns, for which we may need a common logical basis. In this paper we consider
HML with predicates in [1, 3], and we justify the relevance of the stateful logical layer
of [2] by embedding the behaviours of each role in a session — i.e., the projections of
MPSAs —into a HML formula. In this way, the required predicates will hold if a process
and its state perform reductions and updates matching those of the specification.

Yy : Nat, [sc(y)](y = S.x A [S.x++]true) 3

(3) is the formula corresponding to the behaviour of S in (2) on channel s, where [£]¢
means “if a process and its state perform the action ¢, the resulting pair satisfies ¢”.
Communications and state updates are treated as actions of a labelled transition system.

We explain how specifications handling several roles in several sessions can be
soundly and completely embedded, through the use of an interleaving of formulae,
exploring all the possible orders in which the actions coming from different sessions
can be performed, and ensuring that predicates are always satisfied.

2 HML Embedding

MPSAs. We focus here on local assertions, ranged over by L. L refers to a specific role;
we assume it derives, via projection, from some global assertion as in [2] — e.g., as (2).

wt{y : A} (x: S).L: A|t(y: A") | end

Selection p!{l;(x; : U;){A; }{E;).L;}icr models an interaction where the role sends
p a branch label /; and a message x; of sort U; (e.g., int, bool, etc., and local assertion
for delegation). A; are predicates' and E; state updates. We use guarded recursion,
defining a parameter « initially set equal to a value satisfying the initialisation predicate
A’, with A being an invariant predicate. Judgements are of the form I" - P : A where
I is a shared environment and A is the session environment (see [2] for more details).

HML. [2] uses local assertions as a basis for the verification of a processes, ranged
over by P. Here, the behaviour prescribed for P is modelled using the standard HML
with the first-order predicates as in [1]. We use the same type of predicate A as in MP-
SAs. We associate this HML with a LTS where actions £ model communications and
state updates. Namely, P, o Lp ,o’ if either P L Pando =ocorP =P and
o' = oafter /. We use ¢ to denote HML-formulae, which are built from predicates,
implications, universal quantifiers, conjunctions and must modalities. We remark that
the logic used in this safety embedding is positive: if we remove the implication sym-
bol, there is no negation, no existential quantifier, no disjunction and no may modality.
Additionally, the implication will always appear as A = ¢ meaning that modalities
never appear in the negative side.

¢u=true[pnd|é=0|[o|A|Va:So L:=sp,ql(x)]|s[pal()| E

The satisfactions rules (Figure 1) are fairly standard, for a pair P, o to satisfy a
predicate A, A has to hold w.r.t. to o, denoted by 0 p,01 A, meaning that o(A) is a
tautology for the boolean logic.

PoE¢1 P,o = ¢2 if P,o = ¢1 then P,o = ¢2
PokE=¢1 A d2 P,o = true PokE=¢1= ¢
Forall P',o’ st. P,o LN P.o' P o' =¢ 0Fboot A Forallvaluesw of type T, P,o |= ¢[v/x]
P=[l¢ PoEA PoEVz:T.¢

Fig. 1. Logical rules

The embedding of local types we propose is parametrised with a session channel
s[p]. Assertions appearing in input prefixes are embedded as premises in implications,
and assertions in output prefixes have to be satisfied, yielding:

lat{ti (@i : Si){AKEDLitier|*B) = A Vi : Si, [slp, dl (@) (Ai A [E:]|L:5P)) @)

el

la?{l; (x5 : SHLA;KED.L;}jes 1B = A Ve« 85, [s[a, pl()](A; = L) 5)
jeJ

The embedding of selection (4), is a conjunction of formulae corresponding to the
branches: for each value sent on the session channel, predicates should be satisfied and,
if the state is updated, the embedding of the continuation should hold. For branching
types (4), the assertion is used as an hypothesis and no update appear.

' As in [2,3] we assume that the validity of closed formulae is decidable.

3 Soundness

To obtain soundness for typing judgements involving specifications, we have to in-
troduce interleavings of formulae, treating the fact that one process can play several
roles in several sessions. As a simple example both s[p1, p2]?(x).k![q1,q2] {10) and
k![a1,92]<10).s[p1, p2]?(z) can be typed with s[p2] : p1?7(x : Nat).end, k[a:1] :
q2!(y : Nat).end.

Interleaving is not a new operator per se and can be seen as syntactic sugar, describ-
ing shuffling of must modalities. The main rule for interleaving is: [¢1]¢1 % [f2]p2 =
[¢1](d1 % [L2]d2) A [€2]([€1]d1 A d2). When interleaving two or more formulae contain-
ing modalities, we obtain a conjunction of formulae, each one representing a different
way of organising all modalities in a way preserving their initial orders. Informally,
the interleaving of [1][2] and [A][B] is [1][2][A][B] » [A][B][1][2] ~ [1][A][2][B] A
[AI[BI[2] A [IAI[BI[2] A [A][LI[2][B].

We encode a pair A, I into a complex formula Inter(A, I'), defined as the inter-
leaving of the formulae obtained by encoding the local types of A on their correspond-
ing channels and the formulae corresponding to I', built as follows: for each channel
a : I(G), if some s[p] is received on a, the resulting process should satisfy the encoding
on s[p] of the projection of G on p:

Inter(si[pi],...,sn[Pnl;a1 : I(G1),. .., am : I(Gm))
= |72 sa o T o) sy XL X

where ¢; = Vs7.Vp;.[ai(s;[pi])]|G: | P
The erasing operator Er(£), which translates an asserted type into its unasserted

counterpart is defined by the removal of every assertion from the local types. Unasserted
typing rules for the judgements - P > A are easily deduced. Our preciseness result is:

53 [p]

Proposition 1 (Preciseness). If I' — P = A, then: P,oc |= (Inter(A,I')). If
P >Er(A)and P,o |= (Inter(A,I')) then I - P > A.

4 Refinements

Embedding to pure HML We are actually able to embed a stateful satisfaction relation
P,o = ¢ into a satisfaction relation P’ |= ¢’ for a standard 7-calculus with first-order
values, by encoding the store ¢ into a w-process:

s> 01y @n > valp = @) | .. | @) |
te1 (€).a1 (31) - - an (ya)- @ (eval(efpn ... ya/or ... a])) |T2(y2) | ... | @ (y)) | - |
ten(€).ar(41) - an(ya)-(@ (1) | - | @i (ynr) | Galevallelys ... yn/ar ... 22]))

For each variable z; in the domain of the state o, we add an output prefix emitting its
content on the channel a; and we add a replicated module that waits for an update e
at x;, then capture the value of all variables of the current state, replace the variable
x; by evaluating e by eval, and then makes available the other ones. Soundness and
completeness allow us to state that HML formulae for pairs state/process can be seen
as pure HML formulas on the m-processes.

The embedding for the formula is given by |[E]é|, = [|E|p]ll¢[, and [Al, =
[Z1(v1)] ... [Tn(vn)]A{v1, ..., 00 /21,...,2,} where the state variables of A are
LlyeeeyTp.

Proposition 2 (Preciseness). If P,o |= ¢, then |P| | ||o|p = [6],
IPlp ol = I¢lp then Po = ¢

Embedding Recursion Recursion, absent from the previous embeddings, can actually
be encoded at the cost of much technical details. We add to our HML syntax the re-
cursion operators, uX.¢ and X (similar to the ones present in the p-calculus [5]). The
main difficulty lies in the interaction between interleaving and recursion: loops coming
from different sessions can be interleaved in many different way, and the difficult task
is to compute the finite formula which is equivalent to this interleaving. As a small ex-
ample consider the following session environment (interactions are replaced by integer
labels): s1[p1] : #X.1.2.X, s2[pa] : #Y.3.4.Y. The simplest HML formula describing
all possible interleavings is:
HA.([UIuB.([2]A A [8uC.([4]B A [2)([1]C A [4].4)) A

[31uD-([4].A A [UuE.([21D A [4]([2]A A [3]E)))

We will not detail here how we proceed. The idea is that we translate every session
judgment into formula, and then every formula into a finite automaton where one state
corresponds either to a sequence or a recursion, and where transitions correspond to
inputs and outputs. The automata are then merged into a a parallel automaton, which is
expanded recursively into branch automata and translated back into formulas.

On our example, we obtain the formulas pX.[1][2].X and Y.[3][4].Y, each one
giving an automaton with 2 states (initial and between [1] (resp. [3]) and [2] (resp.
[4])). Merging yields automata with 4 states: the inital one, one after [1], one after
[3], one after both [1] and [3]. This automata is diamond-shaped, and, as a result, not
tree-shaped. Expansion yields an automata with 7 states, which is then translated in
the formula described above. The preciseness proof relies on the fact that the operation
described in 3. and 4. give equivalent automata, and that two formulas translated to two
equivalent automata are equivalent for the HML satisfaction relation.

References

1. Martin Berger, Kohei Honda, and Nobuko Yoshida. Completeness and logical full abstraction
in modal logics for typed mobile processes. In ICALP (2), volume 5126 of LNCS, pages
99-111. Springer, 2008.

2. Laura Bocchi, Romain Demangeon, and Nobuko Yoshida. A multiparty multisession logic.
(to appear in TGC), 2012.

3. Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A theory of design-by-
contract for distributed multiparty interactions. In CONCUR, volume 6269 of LNCS, pages
162-176, 2010.

4. Mario Coppo and Mariangiola Dezani-Ciancaglini. Structured communications with concur-
rent constraints. In TGC, pages 104-125, 2008.

5. Mads Dam. CTL* and ECTL* as fragments of the modal mu-calculus. 7CS, 126(1):77-96,
1994.

6. Matthew Hennessy and Robin Milner. Algebraic Laws for Non-Determinism and Concur-
rency. JACM, 32(1), 1985.

7. Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session
Types. In POPL’08, pages 273-284. ACM, 2008.

