99 research outputs found

    Continuation of the exponentially small transversality for the splitting of separatrices to a whiskered torus with silver ratio

    Get PDF
    We study the exponentially small splitting of invariant manifolds of whiskered (hyperbolic) tori with two fast frequencies in nearly-integrable Hamiltonian systems whose hyperbolic part is given by a pendulum. We consider a torus whose frequency ratio is the silver number Ω=21\Omega=\sqrt{2}-1. We show that the Poincar\'e-Melnikov method can be applied to establish the existence of 4 transverse homoclinic orbits to the whiskered torus, and provide asymptotic estimates for the tranversality of the splitting whose dependence on the perturbation parameter ε\varepsilon satisfies a periodicity property. We also prove the continuation of the transversality of the homoclinic orbits for all the sufficiently small values of ε\varepsilon, generalizing the results previously known for the golden number.Comment: 17 pages, 2 figure

    Psi-series of quadratic vector fields on the plane

    Get PDF
    Psi-series (i.e., logarithmic series) for the solutions of quadratic vector fields on the plane are considered. Its existence and convergence is studied, and an algorithm for the location of logarithmic singularities is developed. Moreover, the relationship between psi-series and non-integrability is stressed and in particular it is proved that quadratic systems with psi-series that are not Laurent series do not have an algebraic first integral. Besides, a criterion about non-existence of an analytic first integral is given

    Psi-series of quadratic vector fields on the plane

    Get PDF
    Psi-series (i.e., logarithmic series) for the solutions of quadratic vector fields on the plane are considered. Its existence and convergence is studied, and an algorithm for the location of logarithmic singularities is developed. Moreover, the relationship between psi-series and non-integrability is stressed and in particular it is proved that quadratic systems with psi-series that are not Laurent series do not have an algebraic first integral. Besides, a criterion about non-existence of an analytic first integral is given

    Arnold diffusion for a complete family of perturbations

    Get PDF
    In this work we illustrate the Arnold diffusion in a concrete example — the a priori unstable Hamiltonian system of 2 + 1/2 degrees of freedom H(p, q, I, f, s) = p2/2+ cos q - 1 + I2/2 + h(q, f, s; e) — proving that for any small periodic perturbation of the form h(q, f, s; e) = e cos q (a00 + a10 cosf + a01 cos s) (a10a01 ¿ 0) there is global instability for the action. For the proof we apply a geometrical mechanism based on the so-called scattering map. This work has the following structure: In the first stage, for a more restricted case (I* ~ p/2µ, µ = a10/a01), we use only one scattering map, with a special property: the existence of simple paths of diffusion called highways. Later, in the general case we combine a scattering map with the inner map (inner dynamics) to prove the more general result (the existence of instability for any µ). The bifurcations of the scattering map are also studied as a function of µ. Finally, we give an estimate for the time of diffusion, and we show that this time is primarily the time spent under the scattering map.Peer ReviewedPostprint (published version

    Approximating multi-dimensional Hamiltonian flows by billiards

    Full text link
    Consider a family of smooth potentials VϵV_{\epsilon}, which, in the limit ϵ0\epsilon\to0, become a singular hard-wall potential of a multi-dimensional billiard. We define auxiliary billiard domains that asymptote, as ϵ0\epsilon\to0 to the original billiard, and provide asymptotic expansion of the smooth Hamiltonian solution in terms of these billiard approximations. The asymptotic expansion includes error estimates in the CrC^{r} norm and an iteration scheme for improving this approximation. Applying this theory to smooth potentials which limit to the multi-dimensional close to ellipsoidal billiards, we predict when the separatrix splitting persists for various types of potentials

    Shilnikov Lemma for a nondegenerate critical manifold of a Hamiltonian system

    Full text link
    We prove an analog of Shilnikov Lemma for a normally hyperbolic symplectic critical manifold MH1(0)M\subset H^{-1}(0) of a Hamiltonian system. Using this result, trajectories with small energy H=μ>0H=\mu>0 shadowing chains of homoclinic orbits to MM are represented as extremals of a discrete variational problem, and their existence is proved. This paper is motivated by applications to the Poincar\'e second species solutions of the 3 body problem with 2 masses small of order μ\mu. As μ0\mu\to 0, double collisions of small bodies correspond to a symplectic critical manifold of the regularized Hamiltonian system

    Canonical Melnikov theory for diffeomorphisms

    Full text link
    We study perturbations of diffeomorphisms that have a saddle connection between a pair of normally hyperbolic invariant manifolds. We develop a first-order deformation calculus for invariant manifolds and show that a generalized Melnikov function or Melnikov displacement can be written in a canonical way. This function is defined to be a section of the normal bundle of the saddle connection. We show how our definition reproduces the classical methods of Poincar\'{e} and Melnikov and specializes to methods previously used for exact symplectic and volume-preserving maps. We use the method to detect the transverse intersection of stable and unstable manifolds and relate this intersection to the set of zeros of the Melnikov displacement.Comment: laTeX, 31 pages, 3 figure

    Heteroclinic intersections between Invariant Circles of Volume-Preserving Maps

    Full text link
    We develop a Melnikov method for volume-preserving maps with codimension one invariant manifolds. The Melnikov function is shown to be related to the flux of the perturbation through the unperturbed invariant surface. As an example, we compute the Melnikov function for a perturbation of a three-dimensional map that has a heteroclinic connection between a pair of invariant circles. The intersection curves of the manifolds are shown to undergo bifurcations in homologyComment: LaTex with 10 eps figure

    Generic Twistless Bifurcations

    Get PDF
    We show that in the neighborhood of the tripling bifurcation of a periodic orbit of a Hamiltonian flow or of a fixed point of an area preserving map, there is generically a bifurcation that creates a ``twistless'' torus. At this bifurcation, the twist, which is the derivative of the rotation number with respect to the action, vanishes. The twistless torus moves outward after it is created, and eventually collides with the saddle-center bifurcation that creates the period three orbits. The existence of the twistless bifurcation is responsible for the breakdown of the nondegeneracy condition required in the proof of the KAM theorem for flows or the Moser twist theorem for maps. When the twistless torus has a rational rotation number, there are typically reconnection bifurcations of periodic orbits with that rotation number.Comment: 29 pages, 9 figure
    corecore