134 research outputs found

    Light elements, volatiles, and stable isotopes in basaltic melt inclusions from Grenada, Lesser Antilles: Inferences for magma genesis

    Get PDF
    International audienceGrenada Island is located at the southern end of the Lesser Antilles. Grenada lavas display a large range in compositions which includes picrites, representing the parental melt of all Grenada suites. We present here an extensive study of major, light and volatile elements combined with ήD, ή11B and ή7Li determinations of melt inclusions hosted in olivines (Fo86–91) from picritic scoriae. The major element compositions of melt inclusions encompass those of Grenada basalts. Their H2O contents typically range from 0.2 to 4.1 wt% (one value at 6.4 wt%). Such extreme range stands in contrast with typical arc magmas for a single volcanic center. The high H2O contents are associated with strongly negative values of ήD (on average −140‰). Melt inclusions display a wide range in B (1.7–47 ppm) and Li (1.1–12 ppm) contents as well as in ή7Li and ή11B, which vary from −24 to 8.2‰ and from −20 to 8.9‰, respectively. Both B and Li compositions of Grenada melt inclusions suggest (i) the involvement of dehydration fluids or hydrous silicate melts derived from buried carbonate‐bearing sediments, (ii) the contribution of aqueous fluids generated during the dehydration of hydrothermally altered oceanic crust, and (iii) melting of a mantle metasomatized by the addition of high ή11B, high‐Cl, Li‐poor fluids derived from the early dehydration of serpentinized peridotite above the slab beneath Grenada

    Magmatic and hydrothermal behavior of uranium in syntectonic leucogranites: The uranium mineralization associated with the Hercynian Guérande granite (Armorican Massif, France)

    Get PDF
    Most of the hydrothermal uranium (U) deposits from the European Hercynian belt (EHB) are spatially associated with Carboniferous peraluminous leucogranites. In the southern part of the Armorican Massif (French part of the EHB), the GuĂ©rande peraluminous leucogranite was emplaced in an extensional deformation zone at ca. 310 Ma and is spatially associated with several U deposits and occurrences. The apical zone of the intrusion is structurally located below the Pen Ar Ran U deposit, a perigranitic vein-type deposit where mineralization occurs at the contact between black shales and Ordovician acid metavolcanics. In the MĂ©tairie-Neuve intragranitic deposit, uranium oxide-quartz veins crosscut the granite and a metasedimentary enclave. Airborne radiometric data and published trace element analyses on the GuĂ©rande leucogranite suggest significant uranium leaching at the apical zone of the intrusion. The primary U enrichment in the apical zone of the granite likely occurred during both fractional crystallization and the interaction with magmatic fluids. The low Th/U values (18Owhole rock = 9.7–11.6‰ for deformed samples and ÎŽ18Owhole rock = 12.2–13.6‰ for other samples) indicate that the deformed facies of the apical zone underwent sub-solidus alteration at depth with oxidizing meteoric fluids. Fluid inclusion analyses on a quartz comb from a uranium oxide-quartz vein of the Pen Ar Ran deposit show evidence of low-salinity fluids (1–6 wt.% NaCl eq.), in good agreement with the contribution of meteoric fluids. Fluid trapping temperatures in the range of 250–350 °C suggest an elevated geothermal gradient, probably related to regional extension and the occurrence of magmatic activity in the environment close to the deposit at the time of its formation. U-Pb dating on uranium oxides from the Pen Ar Ran and MĂ©tairie-Neuve deposits reveals three different mineralizing events. The first event at 296.6 ± 2.6 Ma (Pen Ar Ran) is sub-synchronous with hydrothermal circulations and the emplacement of late leucogranitic dykes in the GuĂ©rande leucogranite. The two last mineralizing events occur at 286.6 ± 1.0 Ma (MĂ©tairie-Neuve) and 274.6 ± 0.9 Ma (Pen Ar Ran), respectively. Backscattered uranium oxide imaging combined with major elements and REE geochemistry suggest similar conditions of mineralization during the two Pen Ar Ran mineralizing events at ca. 300 Ma and ca. 275 Ma, arguing for different hydrothermal circulation phases in the granite and deposits. Apatite fission track dating reveals that the GuĂ©rande granite was still at depth and above 120 °C when these mineralizing events occurred, in agreement with the results obtained on fluid inclusions at Pen Ar Ran. Based on this comprehensive data set, we propose that the GuĂ©rande leucogranite is the main source for uranium in the Pen Ar Ran and MĂ©tairie-Neuve deposits. Sub-solidus alteration via surface-derived low-salinity oxidizing fluids likely promoted uranium leaching from magmatic uranium oxides within the leucogranite. The leached out uranium may then have been precipitated in the reducing environment represented by the surrounding black shales or graphitic quartzites. As similar mineralizing events occurred subsequently until ca. 275 Ma, meteoric oxidizing fluids likely percolated during the time when the GuĂ©rande leucogranite was still at depth. The age of the U mineralizing events in the GuĂ©rande region (300–275 Ma) is consistent with that obtained on other U deposits in the EHB and could suggest a similar mineralization condition, with long-term upper to middle crustal infiltration of meteoric fluids likely to have mobilized U from fertile peraluminous leucogranites during the Late Carboniferous to Permian crustal extension events

    Low water content of the Cenozoic lithospheric mantle beneath the eastern part of the North China Craton

    Get PDF
    Nominally anhydrous minerals in 46 peridotite xenoliths hosted by Cenozoic basalts from five localities (Fangshan, Penglai, Qixia, Changle, and Hebi) of the eastern part of the North China Craton (NCC) have been investigated by Fourier transform infrared spectrometry (FTIR). The water contents (H2O wt %) of clinopyroxene (cpx), orthopyroxene (opx), and olivine (ol) range from 27 to 223 ppm, 8 to 94 ppm, and ∌0 ppm, respectively. On the basis of (1) the homogenous H2O content within single pyroxene grains and (2) the equilibrium partitioning of H2O between cpx and opx, it is suggested that the pyroxenes largely preserve theH2Ocontent of their mantle source, although possible H loss during xenolith ascent cannot be excluded for ol. The recalculated whole‐rock H2O contents, using mineral modes and assuming a partition coefficient of 10 for water between cpx and ol, range from 6 to 56 ppm (average of 23 ± 13 ppm). In combination with previously reported data, the recalculated whole‐rock water contents of peridotite xenoliths (105 samples from 9 localities) hosted by Cenozoic basalts from the eastern part of the NCC range from 6 to 85 ppm (average of 25 ± 18 ppm). The Cenozoic lithospheric mantle of the eastern part of the NCC is therefore characterized by a low water content compared to continental lithospheric mantle worldwide represented by typical cratonic and off‐cratonic peridotites (normally 40–180 ppm, with average values of 119 ± 54 ppm and 78 ± 45, respectively) and to oceanic mantle values (>50 ppm) inferred from MORB and OIB. Peridotite xenoliths have low‐to‐moderate spinel Fe3+/SFe (0.02–0.34) and whole rock DFMQ values (from −4.2 to 2.2, normally between −2.5 and 1.5), which are not correlated with pyroxene H2O contents. Therefore, the low water contents cannot have resulted from oxidation of the mantle xenoliths and may have been caused instead by heating from an upwelling asthenosphere flow that acted in concert with NCC lithospheric thinning during the late Mesozoic to early Cenozoic. If so, the present eastern NCC lithospheric mantle represents essentially relict ancient lithospheric mantle after the thinning event, rather than newly accreted and cooled asthenospheric mantle

    Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano

    Get PDF
    International audienceCaldera-forming volcanic eruptions are low-frequency, highimpact events capable of discharging tens to thousands of cubic kilometres of magma explosively on timescales of hours to days, with devastating effects on local and global scales1. Because no such eruption has been monitored during its long build-up phase, the precursor phenomena are not well understood. Geophysical signals obtained during recent episodes of unrest at calderas such as Yellowstone, USA, and Campi Flegrei, Italy, are difficult to interpret, and the conditions necessary for large eruptions are poorly constrained2,3. Here we present a study of pre-eruptive magmatic processes and their timescales using chemically zoned crystals from the 'Minoan' caldera-formingeruption of Santorini volcano,Greece4, which occurred in the late 1600s BC. The results provide insights into how rapidly large silicic systems may pass from a quiescent state to one on the edge of eruption5,6. Despite the large volume of erupted magma4 (40-60 cubic kilometres), and the 18,000-year gestation period between the Minoan eruption and the previous major eruption, most crystals in the Minoan magma record processes that occurred less than about 100 years before the eruption. Recharge of the magma reservoir by large volumes of silicic magma (and some mafic magma) occurred during the century before eruption, and mixing between different silicicmagmabatches was still taking place during the final months. Final assembly of large silicic magma reservoirs may occur on timescales that are geologically very short by comparison with the preceding repose period, with major growth phases immediately before eruption. These observations have implications for the monitoring of long-dormant, but potentially active, caldera systems

    Palaeozoic Basement of the Pyrenees

    Get PDF
    International audienceIn the Pyrenees, the Cambrian-Lower Ordovician strata represent a quiescent time span with no remarkable tectonic activity, followed by a late Early-Mid Ordovician episode of uplift and erosion that led to the formation of the Sardic unconformity. Silurian sedimentation was widespread and transgressive followed by a Devonian succession characterized by a complex mosaic of sedi-mentary facies. Carboniferous pre-Variscan sediments (Tournaisian-Viséan cherts and limestones) precede the arrival of the synorogenic siliciclastic supplies of the Culm flysch at the Late Serpukhovian. All this succession was subsequently affected by the Serpukhovian-Bashkirian (Variscan) collision, as a result of which, the Palaeozoic rocks were incorporated into the northeastern branch of the Ibero-Armorican Arc

    U–Pb Zircon geochronology of the Cambro-Ordovician metagranites and metavolcanic rocks of central and NW Iberia

    Get PDF
    New U–Pb zircon data from metagranites and metavolcanic rocks of the Schist-Graywacke Complex Domain and the Schistose Domain of Galicia Tras-os-Montes Zone from central and NW Iberia contribute to constrain the timing of the Cambro-Ordovician magmatism from Central Iberian and Galicia Tras-os-Montes Zones which occurred between 498 and 462 Ma. The crystallization ages of the metagranites and metavolcanic rocks from the northern Schist-Graywacke Complex Domain are as follows: (a) in west Salamanca, 489 ± 5 Ma for Vitigudino, 486 ± 6 Ma for Fermoselle and 471 ± 7 Ma for Ledesma; (b) in northern Gredos, 498 ± 4 Ma for Castellanos, 492 ± 4 Ma for San Pelayo and 488 ± 3 Ma for Bercimuelle; (c) in Guadarrama, 490 ± 5 Ma for La Estacion I, 489 ± 9 Ma for La Canada, 484 ± 6 Ma for Vegas de Matute (leucocratic), 483 ± 6 Ma for El Cardoso, 482 ± 8 Ma for La Morcuera, 481 ± 9 Ma for Buitrago de Lozoya, 478 ± 7 Ma for La Hoya, 476 ± 5 Ma for Vegas de Matute (melanocratic), 475 ± 5 Ma for Riaza, 473 ± 8 Ma for La Estacion II and 462 ± 11 Ma for La Berzosa; and (d) in Toledo, 489 ± 7 Ma for Mohares and 480 ± 8 Ma for Polan. The crystallization ages of the metagranites from the Schistose Domain of Galicia Tras-os-Montes Zone are 497 ± 6 Ma for Laxe, 486 ± 8 Ma for San Mamede, 482 ± 7 Ma for Bangueses, 481 ± 5 Ma for Noia, 480 ± 10 for Rial de Sabucedo, 476 ± 9 Ma for Vilanova, 475 ± 6 Ma for Pontevedra, 470 ± 6 Ma for Cherpa and 462 ± 8 Ma for Bande.This magmatism is characterized by an average isotopic composition of (87Sr/86Sr)485Ma ≈ 0.712, (eNd)485Ma ≈ -4.1 and (TDM) ≈ 1.62 Ga, and a high zircon inheritance, composed of Ediacaran–Early Cambrian (65 %) and, to a lesser extent, Cryogenian, Tonian, Mesoproterozoic, Orosirian and Archean pre-magmatic cores. Combining our geochronological and isotopic data with others of similar rocks from the European Variscan Belt, it may be deduced that Cambro-Ordovician magmas from this belt were mainly generated by partial melting of Ediacaran–Early Cambrian igneous rocks

    Origin and evolution of water on the earth: Contribution of D/H ion probe measurements

    No full text

    Li and 7Li behaviour in mantle: magmatic and metasomatic processes

    No full text
    International audienc
    • 

    corecore