221 research outputs found
Aspectos didácticos a tener en cuenta en la estructuración de materiales impresos
Documento PDF, 8 páginas.Aspectos didácticos a tener en cuenta en la estructuración de materiales impresosUniversidad Estatal a Distancia de Costa Ric
ANC–BNC titrations and geochemical modeling for characterizing calcareous and siliceous mining waste
Pyrite and calcite are mineral phases that play a major role in acid and neutral mine drainage processes. However, the prediction of acid mine drainage (AMD) or contaminated neutral drainage (CND) requires knowledge of the mineral composition of mining waste and the related potential for element release. This paper studies the combination of acid–base neutralizing capacity (ANC–BNC) with geochemical modeling for the characterization of mining waste and prediction of AMD and CND. The proposed approach is validated with three synthetic mineral assemblages: (1) siliceous sand with pyrite only, representing mining waste responsible for AMD, (2) siliceous sand with calcite and pyrite, representing calcareous waste responsible for CND, and (3) siliceous sand with calcite only, simulating calcareous matrices without any pyrite. The geochemical modeling approach using PHREEQC software was used to model pH evolution and main element release as a function of the added amount of acid or base over the entire pH range: 1 < pH < 13. For calcareous matrices (sand with calcite), the results are typical of a carbonated environment, the geochemistry of which is well known. For matrices containing pyrite, the results identify different pH values favoring the dissolution of pyrite: pH = 2 in a pyrite-only environment and pH = 6 where pyrite coexists with calcite. The neutral conditions can be explained by the buffering capacity of calcite, which allows iron oxyhy-droxide precipitation. Major element release is then related to the dissolution and precipitation of the mineral assemblages. The geochemical modeling allows the prediction of element speciation in the solid and liquid phases. Our findings clearly prove the potential of combined ANC–BNC experiments along with geochemical modeling for the characterization of mining waste and the assessment of risk of AMD and CND. © 2020 by the authors. *Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Thomas Baumgartl” is provided in this record*
Lead mobilization and speciation in mining waste : experiments and modeling
Mining produces significant amounts of solid mineral waste. Mine waste storage facilities are often challenging to manage and may cause environmental problems. Mining waste is often linked to contaminated mine drainage, including acidic waters with more or less elevated concentrations of trace metals such as lead. This work presents a study on the mobilization of lead from waste from two typical mining sites: Zeida and Mibladen, two now-closed former Pb–Zn mines in the Moulouya region of Morocco. Our research investigates the mobilization potential of Pb from the waste of these mines. The study involved acid–base neutralization capacity tests (ANC–BNC) combined with geochemical modeling. Experimental data allowed for the quantification of the buffering capacity of the samples and the mobilization rates of lead as a function of pH. The geochemical model was fitted to experimental results with thermodynamic considerations. The geochemical model allowed for the identification of the mineral phases involved in providing the buffering capacity of carbonated mining waste (Mibladen) and the meager buffering capacity of the silicate mining waste (Zeida). These cases are representative of contaminated neutral drainage (CND) and acid mine drainage (AMD), respectively. The results highlight the consistency between the ANC–BNC experimental data and the associated modeling in terms of geochemical behavior, validating the approach and identifying the main mechanisms involved. The modeling approach identifies the dissolution of the main solid phases, which impact the pH and the speciation of lead as a function of the pH. This innovative approach, combining ANC–BNC experiments and geochemical modeling, allowed for the accurate identification of mineral phases and surface complexation phenomena, which control the release of lead and its speciation in drainage solutions, as well as within solid phases, as a function of pH. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Thomas Baumgartl” is provided in this record*
Prurit après prise de chloroquine et filarioses
Une étude des rapports entre le prurit après prise de chloroquine et l'infection par #Mansonella perstans filaire sanguine fréquente dans certaines régions mais passant inaperçue car peu pathogène et par #Onchocerca volvulus filaire dermique fréquente et aux conséquences pathologiques parfois graves a été menée dans deux villages de Côte d'Ivoire. Il n'est pas possible de mettre en évidence un rapport entre l'existence de ce prurit et l'infection par ces deux filaires. (Résumé d'auteur
Zinc Sorption to Three Gram-Negative Bacteria: Combined Titration, Modeling, and EXAFS Study
The acid-base and Zn sorption properties of three bacteria, Cupriavidus metallidurans CH34, Pseudomonas putida ATCC12633, and Escherichia coli K12DH5R, were investigated through an original combination of extended X-ray absorption fine structure (EXAFS) spectroscopy and equilibrium titration studies. Acid-base titration curves of the three strains were fitted with a model accounting for three conceptual reactive sites: an acidic (carboxyl and/ or phosphodiester), a neutral (phosphomonoester), and a basic (amine and/or hydroxyl) group. Calculated proton and Zn equilibrium constants and site densities compare with literature data. The nature of Zn binding sites was studied by EXAFS spectroscopy. Phosphoester, carboxyl, and unexpectedly sulfhydryl ligands were identified. Their proportions depended on Zn loading and bacterial strain and were consistent with the titration results. These findings were compared to the structure and site density of the major cell wall components. It appeared that the cumulated theoretical site density of these structures (<2 Zn nm-2) was much lower than the total site density of the investigated strains (16-56 Zn nm-2). These results suggest a dominant role of extracellular polymeric substances in Zn retention processes, although Zn binding to inner cell components cannot be excluded
Évaluation des risques écologiques causés par des matériaux de dragage: roposition d'une approche adaptée aux dépôts en gravière en eau
Une procédure d'évaluation des risques pour l'écosystème aquatique engendrés par un dépôt de matériaux de dragage dans une gravière type a été élaborée, et testée avec des échantillons de sédiments d'un canal du Nord-Est de la France. La procédure comporte une étape d'évaluation sommaire des risques, à partir de quotients des concentrations mesurées par les critères de danger correspondants, et une étape d'évaluation détaillée où des essais de toxicité et de lixiviation en colonnes sont mis en œuvre. Le scénario testé retient trois hypothèses, qui concernent (a) les effets sur les peuplements d'invertébrés benthiques, représentés notamment par Hyalella azteca et Chironomus riparius, (b) les effets sur les peuplements d'organismes pélagiques, représentés par Chlorella vulgaris, Ceriodaphnia dubia, et Brachionus calyciflorus, et (c) la pollution de la nappe alluviale associée. Différentes modalités d'exposition (essais normalisés, microcosmes) ont été testées. Dans le contexte particulier des trois sédiments étudiés, ces hypothèses se sont avérées plus ou moins discriminantes, la pollution de la nappe étant la plus sensible. Des améliorations de la procédure doivent être envisagées qui concernent à la fois la formulation des hypothèses (risques à court et long terme sur les organismes pélagiques), et les protocoles d'essai, tant pour les organismes du sédiment (rôle de la nourriture notamment) que pour les essais de lixiviation en colonnes.When contaminated by metals or synthetic organic compounds, dredged sediments may have negative impacts on receiving ecosystems. Therefore, there is a need for an operational risk assessment approach. Such a framework is proposed for dredged material deposits in open gravel quarries, which is a rather common means of disposal in France. The first step of the assessment relies upon chemical characterisation of the sediments; the resulting concentrations are divided by "probable effect concentrations" and pooled together, in order to calculate a global hazard quotient. According to the value of this quotient, several decisions can be taken: (a) undertake a detailed risk assessment, (b) dispose of the materials without further constraints, or (c) in case of uncertainty, do some biological testing (with Hyalella azteca and Chironomus riparius) in order to allow decisions. The second step is a detailed ecological risk assessment. Three different assessment endpoints have been proposed, which are (1) the deposit should have no effect on the structure and abundance of benthic invertebrates in the quarry, (2) it should have no long term effect on pelagic species, and (3) it should not cause groundwater pollution, as such quarries are in fact cross sections of shallow alluvial groundwater aquifers. A fourth assessment endpoint should be introduced, regarding health risks for recreational uses, including fishing, but this endpoint was not implemented in the current version of the approach. The analysis phase includes aquatic bioassays (bacteria - Metplate TM-, algae, microcrustaceans Ceriodaphnia dubia, rotifers Brachionus calyciflorus), and leaching assays in columns under ascendant flow.The proposed approach was tested with 3 sediments from a canal located in the north-eastern region of France. Microcosm assays were introduced in parallel to the proposed tests, in order to explore alternatives to standardised bioassays. According to their hazard quotient, the 3 sediments showed a contamination gradient; one of them should not have entered the detailed risk assessment phase, while another would have been further tested with H. azteca and C. riparius. In that case, this latter sediment would not have entered the detailed phase either, as it was not toxic to these species. However, the detailed risk assessment approach was applied to the three sediments, so as to test completely the relevance of the framework.The three sediments were not significantly toxic to either C. riparius or H. azteca. However, some effects were observed in microcosms, including genotoxicity to molluscs. In this case, no risk characterisation could be made. Pore waters extracted from the three sediments were not toxic or slightly toxic to bacteria, algae, and C. dubia; an EC10 value could be determined only for B. calyciflorus. Therefore, due to exposure calculations, it seems there is a risk to pelagic species. However, as 3 bioassays out of 4 were negative or inconclusive, a refinement step would seem to be necessary. The highest concentrations of cadmium, copper, chromium, nickel and zinc were measured in the first lixiviates of the most contaminated sediment. Yet, even in that case, the total extracted fraction remained less than 10% of the total load. This fraction was below 1% for the other sediments, whatever the metal. Maximum concentrations and predicted concentrations at 1 year were compared to drinking water standards. This comparison showed a real risk of degrading groundwater quality for that most contaminated sediment, and a transient risk due to cadmium and nickel for the following one on the contamination gradient.Considering these results, the design of the first step of the proposed assessment approach may be discussed, as one sediment which would not have been assessed in depth according to its hazard quotient did show a risk to pelagic species. This discrepancy underlines the fact that some sediment toxicity may exist below the lowest threshold. As it would be unrealistic to enter systematically into detailed risk assessments, the proposed thresholds in the decision diagram must be pragmatic compromises rather than absolutely safe boundaries. Moreover, protocol improvements are needed for sediment toxicity bioassays. Chronic endpoints are preferable, as they are more sensitive and more relevant. Another issue is related to the role of additional food: not adding food may increase the apparent toxicity, but the sediment organic content, which is an alternative food source, may also be a contaminant carrier. Furthermore, the second assessment endpoint (risk to pelagic species) should be reformulated, as it includes in fact two different questions. Short-term risks related to the deposition phase could be assessed with standardised bioassays like C. dubia survival and reproduction and algal growth, while longer term risks related to contaminant diffusion could be assessed with microcosms. Genotoxic effects were observed at rather high levels, as compared to published results. This result stresses the interest of introducing sensitive and early markers in the risk assessment process, although their real meaning for ecosystems is not yet fully elucidated. Finally, the leaching tests in columns are not completely satisfactory, as the column filling implies that one must first dry the sediments, which will alter their structure. Other application trials along with field validation studies should be carried out prior to the introduction of this scenario in operational or regulatory frameworks
Optimised methods (SDS/PAGE and LC-MS) reveal deamidation in all examined transglutaminase-mediated reactions
Transglutaminases (TGs) are a family of structurally and functionally related enzymes that catalyse calcium-dependent post-translational modifications of proteins through protein-protein crosslinking, amine incorporation, or deamidation. For many years deamidation mediated by TGs was considered to be a side reaction, but recently substrate-specific deamidations have been reported. Here we describe an optimised SDS/PAGE assay for the easy and rapid monitoring of the TG reaction with small peptides. The relative proportion of deamidation to transamidation was evaluated by densitometric analysis and confirmed by nano-liquid chromatography-nano-electrospray ionisation MS. We further investigated the effect of reaction conditions on transamidation and deamidation of TG1, TG2 and blood coagulation factor XIII A-subunit (FXIII-A) enzymes using a panel of glutamine-containing peptide substrates. The ratio of transamidation to deamidation was enhanced at high excess of the acyl-acceptor substrate and increasing pH. In addition, it was influenced by peptide substrates as well. Whereas deamidation was favoured at low cadaverine concentrations and acidic pH, no significant effect of calcium was observed on the ratio of transamidation/deamidation. Under our experimental conditions, deamidation always occurred in vitro even at high excess of the acyl-acceptor substrate, and the reaction outcome was shifted to deamidation at neutral pH. Our results provide clear evidence of the deamidation in the TG reaction, and may serve as an important approach for in vivo analysis of deamidation to better understand the role of TGs in biological events
- …