1,117 research outputs found
Field-control, phase-transitions, and life's emergence
Instances of critical-like characteristics in living systems at each
organizational level as well as the spontaneous emergence of computation
(Langton), indicate the relevance of self-organized criticality (SOC). But
extrapolating complex bio-systems to life's origins, brings up a paradox: how
could simple organics--lacking the 'soft matter' response properties of today's
bio-molecules--have dissipated energy from primordial reactions in a controlled
manner for their 'ordering'? Nevertheless, a causal link of life's macroscopic
irreversible dynamics to the microscopic reversible laws of statistical
mechanics is indicated via the 'functional-takeover' of a soft magnetic
scaffold by organics (c.f. Cairns-Smith's 'crystal-scaffold'). A
field-controlled structure offers a mechanism for bootstrapping--bottom-up
assembly with top-down control: its super-paramagnetic components obey
reversible dynamics, but its dissipation of H-field energy for aggregation
breaks time-reversal symmetry. The responsive adjustments of the controlled
(host) mineral system to environmental changes would bring about mutual
coupling between random organic sets supported by it; here the generation of
long-range correlations within organic (guest) networks could include SOC-like
mechanisms. And, such cooperative adjustments enable the selection of the
functional configuration by altering the inorganic network's capacity to assist
a spontaneous process. A non-equilibrium dynamics could now drive the
kinetically-oriented system towards a series of phase-transitions with
appropriate organic replacements 'taking-over' its functions.Comment: 54 pages, pdf fil
Losing sight of atmospheric sounds in televised nature documentary
The production of soundtracks for televised nature documentaries involves complexities in balancing the audience's sonic perceptions and emotions with audio content and scientific rigour. In addition, soundtracks need to be congruent with audience expectations and commercial imperatives. Popular televised nature documentaries often appear to be narrative melodramas with environmental soundscapes submerged by narration and music. This paper examines the correlations between perceptual agency, educational practices and production constraints with regards to sound production in nature documentaries. The purpose is a clarification surrounding the causative factors and results of the curious neglect for the sound of our natural world within an industry dedicated to the sensory portrayal of nature
Hydrodynamics of Suspensions of Passive and Active Rigid Particles: A Rigid Multiblob Approach
We develop a rigid multiblob method for numerically solving the mobility
problem for suspensions of passive and active rigid particles of complex shape
in Stokes flow in unconfined, partially confined, and fully confined
geometries. As in a number of existing methods, we discretize rigid bodies
using a collection of minimally-resolved spherical blobs constrained to move as
a rigid body, to arrive at a potentially large linear system of equations for
the unknown Lagrange multipliers and rigid-body motions. Here we develop a
block-diagonal preconditioner for this linear system and show that a standard
Krylov solver converges in a modest number of iterations that is essentially
independent of the number of particles. For unbounded suspensions and
suspensions sedimented against a single no-slip boundary, we rely on existing
analytical expressions for the Rotne-Prager tensor combined with a fast
multipole method or a direct summation on a Graphical Processing Unit to obtain
an simple yet efficient and scalable implementation. For fully confined
domains, such as periodic suspensions or suspensions confined in slit and
square channels, we extend a recently-developed rigid-body immersed boundary
method to suspensions of freely-moving passive or active rigid particles at
zero Reynolds number. We demonstrate that the iterative solver for the coupled
fluid and rigid body equations converges in a bounded number of iterations
regardless of the system size. We optimize a number of parameters in the
iterative solvers and apply our method to a variety of benchmark problems to
carefully assess the accuracy of the rigid multiblob approach as a function of
the resolution. We also model the dynamics of colloidal particles studied in
recent experiments, such as passive boomerangs in a slit channel, as well as a
pair of non-Brownian active nanorods sedimented against a wall.Comment: Under revision in CAMCOS, Nov 201
Protein multi-scale organization through graph partitioning and robustness analysis: Application to the myosin-myosin light chain interaction
Despite the recognized importance of the multi-scale spatio-temporal
organization of proteins, most computational tools can only access a limited
spectrum of time and spatial scales, thereby ignoring the effects on protein
behavior of the intricate coupling between the different scales. Starting from
a physico-chemical atomistic network of interactions that encodes the structure
of the protein, we introduce a methodology based on multi-scale graph
partitioning that can uncover partitions and levels of organization of proteins
that span the whole range of scales, revealing biological features occurring at
different levels of organization and tracking their effect across scales.
Additionally, we introduce a measure of robustness to quantify the relevance of
the partitions through the generation of biochemically-motivated surrogate
random graph models. We apply the method to four distinct conformations of
myosin tail interacting protein, a protein from the molecular motor of the
malaria parasite, and study properties that have been experimentally addressed
such as the closing mechanism, the presence of conserved clusters, and the
identification through computational mutational analysis of key residues for
binding.Comment: 13 pages, 7 Postscript figure
On the inner-perceived sound objects
Some individuals perceive a wider amount of sonic information from out of and within, the body. Pauline Oliveros describes the sonic envelope of the earth, the sonosphere, as made of resonant frequencies that couple bodies to the earth's magnetic fields, feeding each ocher: "All cells of the earth and body vibrate". ² Bodily effects of inaudible high frequencies and low frequencies, singled out or combined, stimulate a non-airborne auditory system activating a biological, non-neuronal and intracellular messenger apparatus. The revealed cellular changes co the brain thalamus and brain stem suggest that co base sensory knowledge on airborne sound conduction and the traditional notion of audibility- between 20 Hz and 22 kHz - overlooks important findings, as an 'unrecognised sensing mechanism' might exist.
Identification and geographic distribution of genetic groups of Erysiphe necator in Chilean vineyards
The grapevine powdery mildew, caused by the biotrophic fungus Erysiphe necator, is one of the most important diseases of this crop in Chile. We converted existing single nucleotide polymorphisms in β-tubulin, rDNA intergenic spacer region 1 and eburicol 14-α-demethylase into three cleaved amplified polymorphic sequences (CAPS). These CAPS markers were used for the genetic characterization of Erysiphe necator isolates collected on clusters of Vitis vinifera cv. 'Cabernet Sauvignon' in 23 vineyards across Chile. Among the 105 Chilean isolates analyzed, 103 revealed to belong to genetic group B and 2 to genetic group A. These results correspond to the first report of the presence of genetic groups A and B of E. necator in Chile
Tempo and mode of early gene loss in endosymbiotic bacteria from insects
BACKGROUND: Understanding evolutionary processes that drive genome reduction requires determining the tempo (rate) and the mode (size and types of deletions) of gene losses. In this study, we analysed five endosymbiotic genome sequences of the gamma-proteobacteria (three different Buchnera aphidicola strains, Wigglesworthia glossinidia, Blochmannia floridanus) to test if gene loss could be driven by the selective importance of genes. We used a parsimony method to reconstruct a minimal ancestral genome of insect endosymbionts and quantified gene loss along the branches of the phylogenetic tree. To evaluate the selective or functional importance of genes, we used a parameter that measures the level of adaptive codon bias in E. coli (i.e. codon adaptive index, or CAI), and also estimates of evolutionary rates (Ka) between pairs of orthologs either in free-living bacteria or in pairs of symbionts. RESULTS: Our results demonstrate that genes lost in the early stages of symbiosis were on average less selectively constrained than genes conserved in any of the extant symbiotic strains studied. These results also extend to more recent events of gene losses (i.e. among Buchnera strains) that still tend to concentrate on genes with low adaptive bias in E. coli and high evolutionary rates both in free-living and in symbiotic lineages. In addition, we analyzed the physical organization of gene losses for early steps of symbiosis acquisition under the hypothesis of a common origin of different symbioses. In contrast with previous findings we show that gene losses mostly occurred through loss of rather small blocks and mostly in syntenic regions between at least one of the symbionts and present-day E. coli. CONCLUSION: At both ancient and recent stages of symbiosis evolution, gene loss was at least partially influenced by selection, highly conserved genes being retained more readily than lowly conserved genes: although losses might result from drift due to the bottlenecking of endosymbiontic populations, we demonstrated that purifying selection also acted by retaining genes of greater selective importance
- …